Creating Behavior

with Crickets

This document has two goals. Oneisto provide the user with activities to provoke
thinking and discussion around the field of robotic art. The second is to provide the user
with useful programming skills that will serve as a starting point for future explorations.
The user should be prepared to conduct research in both fields outside of this document
as well as working on along-term project outside of these activities in order for the
concepts introduced here to become clear.

Accompaniments to this document include the CricketL ogo language reference (attached)
and the Jackal programming environment.



Parts List:

1. Cricket

2. Interface Cricket

3. Light, temperature, touch sensors

4. Motors and motor cables

5. Distance, Clock, Tri-color LED, Big Motor, Stepper Motor, ??? Bus Devices
6. AC to DC power adapter (outside barrel positive)

Setting up:

1. Install Jackal.

2. Plug serid cableinto computer serial port, Interface Cricket.

3. In Jackal, select Edit/Preferences and choose the seria port you are using.

4. Point the infra-red parts of the Interface Cricket and the Cricket towards each other.

5. In the Command Center in Jackal, type ‘beep’ and press return. The Cricket should

beep.

Your first CricketL ogo program:

Jackal has three windows- Procedures, Command Center, and Run This. The
Command Center isfor trying out single lines of instructions: type the instruction here
and press return. Y our programs will be written in the Procedures window. You can
write as many procedures as you want in this window, each starting with ‘to’ and
finishing with *end’, as shown below.

to test
repeat 10 [note random 5 wait 2]
end

Now, in order for the Cricket to know what procedure to run when the white ‘run’ button
is pushed, we must write the name of the procedure in the Run This window. Now, a
few other points:

Primitives and Flow
Write a program to build a peanut butter and jelly sandwich. Hereis part of mine (this
isn't real, of course):

t o make-bel i eve-peanut - butter-sandw ch
gr ab- knife
open-jar (peanut)
I f(jar-open)[
repeat 10 [ dip-knife spread-substance]]
cl ose-jar (peanut)
open-jar (jelly)
i1 f(jar-open)[



repeat 10 [di p-knife spread-substance]]
close-jar (jelly)
end

to grab-knife
??
??

end

to open-jar :n
??
?7?

end

?7?

What are the primitives (the native commands that the program is built out of, such as
repeat)? What are the procedures (blocks of code starting with to ending with end)? For
example, make-believe-peanut-butter-sandwich is one, the others are grab-knife, open-
jar.etc, adthough they are not shown here. The procedure make-believe-peanut-butter -
sandwich calls the other procedures, which do their thing and return. Are there
collections of primitives that often get reused? What is the flow (how does the Cricket
step through the program)? Does any process get interrupted by another? What are the
conditionals (what conditions are checked, then acted upon)?

Apply the same questions to this CricketL ogo programs. These will work on your
Cricket, so plug in some motors, type the code in the Procedur es window, type dance
into the Download T his window, and download them!

to dance
st ep- forward
st ep- back
repeat 2 [step-forward]
repeat 2 [ step-back]
end

to step-forward
note 20 10
t hi sway
ab, onfor 5
end

to step-back
note 30 10
t hat way
ab, onfor 5
end



Bus

A bus is a communication method that allows computers to talk to other devices. In
Crickets, using the busis as simple as plugging in a device and remembering the right
primitive that controls the device. For instance, plug in adigital display bus device and
run the following program:

to test
di splay 99
end

The primitive display tells the digital display to display a number, in this case 99.

Syntax

Computer languages have syntax just as written languages do. Syntax is a burden we just
have to deal with. Luckily, CricketLogo has little.

Procedures must start with 'to’ followed by a procedure name of your choosing and end
with 'end’. Math operations must be spaced and brackets and parenthesis are used in
many primitives.

Consider:

to bl ah
if (sensora * 2 > 100) [beep]
end

I nput/Output

Computers can have both inputs and outputs, such as the mouse or monitor that we are al
familiar with. The Cricket has three 'primitive’ outputs ( motors, speaker, and infra-red.)
and two inputs. (sensors and infrared).

Sensora values are read with the primitives 'sensora’ or sensorb’. Sensor values read from
0to 255. Crickets can also use bus devices as an input or output device.

Please read through the attached CricketL ogo reference to get a better understanding of
the syntax and commands of CricketLogo. Through the following activities, take some
time to lookup the commands used in the sample programs and also try to understand the
structure of the programs. Analyze each sample program line-by-line to understand their
flow. At anytime, break away from these activities to explore something in-depth.



Activity One: Actuation and Motors

Movement is the first quality we will explore that alludes to behavior. This activity
focuses on animating a found object in ways that suggest life, intelligence, or irony it its
movement. Please read the below choices, play with each, then build something,
focusing on one quality of movement.

Built-in Motor Ports: The Cricket allows us to control the duration, direction, and speed
of motors. Try this program after plugging in a motor to Motor Port A (see Cricket
Diagram) on the Cricket:

to notor-test

a, on ;turn notor a on
wait 10 ; wait one second
a, rd ;reverse the notor direction
wait 10
a, setpower 2 ;set the power lower, to 2 out of 8
wait 10
a, setpower 8 ;bunmp it back up to 8
wait 10
end

Motor port B works the same way. Another motor command is a, onfor. This command
turns on a motor for a given amount of time. However, the Cricket will move on to the
next command while the motor is till on, waiting to be turned off. Thisis different than
the wait command, which pauses the execution of the program for the duration of the
wait. For example, the two below programs function very differently.

to notor-one ;turns on notor a, quickly changes its
;direction, after
a, onfor 30 ;3 seconds shuts it off
rd
end
to notor-two ;turns on notor a, waits 3 seconds, changes
;its direction
a, on
wai t 30
rd
end

Gearing is still sometimes necessary, as are mechanisms for converting a motor’s circular
motion to linear motion. Fred Martin’s The Art of LEGO Design



(http://handyboar d.convtechdocs/artoflego.pdf )is a good introduction to prototyping
mechanisms with LEGO.

Also, as a motor’s turning rate is unreliable, we will also want to incorporate feedback to
ensure precise positioning. This could be accomplished by having the moving object, or
some part of the mechanism in motion, trip a touch sensor to stop the motion, change the
speed or direction, or start a completely different behavior aswell. Suppose we have a
motor turning alever of some sort, which at some point will run into a switch. Code for
this situation might look like the following:

t o not or-f eedback

a, on ;turn nmotor a on
loop [ if(switcha)
[a, of f]
] ;continually check the state
;of swtch a- if
end ; pressed, turn off the notor

Servo Motors. Some motors have this feedback ability built into them these motors are
called ‘servo’ motors. The Cricket has a special board (bus device) that can control servo
motors. Instead of turning them on or off (the servo motors used withthis board cannot
turn in full circles), we tell them what position to go to. The is accomplished with the
command turn-servo, which we pass the servo motor number (Iabeled on the device)
first, followed by the position we want it to go to. This position number must be
experimented with in order to obtain the position you want. With the Servo Motor bus
device connected to the Cricket and a servo motor plugged into it (black wire should be
closest to edge), run the following program:

to servo-test
turn-servo 1 20 ;turn servo 1 to position 20
wait 5
turn-servo 1 50
wait 5
turn-servo 1 90
wait 5
turn-servo O
end

Stepper Motors: Stepper motors are another type of motor that can be quite useful.
Stepper motors turn in angular steps, allowing the precise positioning of servo motors but
can also turn all of the way around. The Stepper Motor bus device can control two
steppers with the following commands:

a- step-speed :n ;set the speed of stepper
;a 0-100



a-step-forward ;step forward forever

a- step-off ; Stop stepping
a- st ep- br ake ;lock up notor so it won't
;turn
a- st ep- back ; step backward forever
a-step-forwardfor :n ;step forward of :n nunber
;of steps 0-255
a- st ep- backwardfor :n ; step backward for :n

; nunber of steps 0-255

Note: Match up the color abbreviations on the Stepper Motor bus device when
connecting a stepper motor.

Big Motors: One more actuation option is the use of big DC motors. While the Cricket
can run DC motors on its own, you are limited to motors that run on less than 9V and
draw less than .4 Amps. For people interested in controlling larger DC motors (needed
for more power), the Big Motor bus device is needed. This device needs its own power
supply, which needs have a connector with the outside barrel the positive supply, and
inside barrel ground. The power supply can be anywhere from 5V to 40V. Once thisand
the motor are connected, the following commands can be used:

a- set power :n
a-t hi sway

a- t hat way

a- br ake

a-of f

b- set power :n
b- t hi sway

b- t hat way

b- br ake

b- of f

See the appendix for places to find cheap DC motors.

Artists and their work to view and discuss:
Marc Bohlen - http://www.contrib.andrew.cmu.edu/~bohlen/salt.htm
http://www.contrib.andrew.cmu.edu/~bohlen/alarm.htm
Gregory Barsamian - http://www.concentric.net/~V enial/scul ptur.html
James Seawright - http://www.seawright.net/jamesseawright/motion.html



Activity Two: Sensing

Another interesting aspect of the Cricket isits ability to sense conditions of the physical
world. In this activity, we will build an ambient display of an environmental factor. Four
sensors plug directly into the sensor ports on the Cricket- they are light, temperature,
touch (switch), and capacitive touch. These sensor values are accessed by the sensora or
sensorb command. The values range from 0 to 255. Try the following program after
plugging in a sensor to Sensor Port A and a digital display.

to sensor-test
| oop[ display sensora]
end

Try out each sensor to get an idea of itsrange. For details of using the capacitive touch
sensor, please see the appendix. Other sensors are bus devices, such as the distance
sensor and the clap sensor. Plug in the optical distance sensor and try the following
program:

to di stance-test
| oop[ display ods-get-distance ]
end

Strange results? Probably. These sensors have a point at which the number displayed
will reverse- one nice way around this problem is to make them into a motion sensor with
asimple agorithm. It looks like this:

gl obal [distl dist2]

to notion-sensor
| oop|

setdist1l ods-get-distance

setdi st2 ods- get-distance

if (distl > 30)]

if (((distl - dist2) > 10) or ((dist2 - distl) >

10 )) [ beep]

]

end

It uses global variables to store two different distance readings at dlightly different times.
It then checks to seeif they are different by 10 or more. If so, motion has been ‘ detected’
and it will beep. See the attached CricketL ogo reference for the details of global
variables.

Now, attach the clap sensor and a motor and try the following program:

to clap-test
when[ cl ap?][a, onfor 5]



end
Play with the dial to adjust the sensitivity of the device.

Now, design away to display sensor information in a way suggestive of the information
itself or another quality related to measured factor. Feel free to use the MIDI board here,
as there is along heritage of mapping sensor information to music. Seethe list of bus-
device commands for the MIDI commands.

Here is one to get you started: It uses the Tri-color LED bus device and two sensors
control the red and blue values of the LED.

t o sensor - di spl ay
| oop[ CcLED sensora 255 sensorb]
end

(The function cLED controls the Tri-color LED, with three arguments- the red, green,
and blue value to display).

Artists and their work to view and discuss.

Amy Young - http://www.ylem.org/artists/ayoungs/index.html
RaniaHo —

http://www.ok-centrum.at/english/ausstel lungen/cyberartsO0/ho.html



Activity Three: Time

An interesting ability of the Cricket isits ability to keep track and respond to the date and
time. Thisability gives us the opportunity to create work whose behavior changes by
date or time, evolves, or ages. This activity centers on a creation whose behavior changes
during the course of the day. The clock needs to have constant power in order to keep the
time, so make sure the backup battery isin place. The following functions are used to
control the clock:

cl ock-init ;get the clock ready to wite
to
set-tinme :hr :mn ;set the tine

set-date :day :nth :year :dow;set the day, nonth, year,
and day of week

get - day ;returns the day
get-nth

get-year

get - dow

get- hr

get-mn

get - sec

For example:

to time-test
clock-init
set-tinme 12 30
set-date 8 3 02 1
do- son®et hi ng

end

t o do-sonet hi ng
| oop[
if ((get-time = 24) and (get-dow = 4))[a, onfor 20]

end

Notice that the first program, time-test, is used to initialize the clock. That program then
calls another program, do-something, that constantly checks the time and reacts at
midnight on Wednesdays.

Artists and their work to view and discuss:
Bruce Cannon - http://home.attbi.com/~brucecannor/
Ken Feingold - http://www.kenfeingold.com/docs/KF_01 2002.pdf



Activity Four: Communication

A unique ability of the Cricket isits ability to communicate to other Crickets viainfra-red
light. The primitive send sends a number (0-255), while the primitive newir? returns true
if there has been a new IR reception, and the primitive ir returns the number received
(and a'so sets newer? back to false). With only two Crickets talking back and forth, you
do not have to be too concerned with protocol. One Cricket sends a number that
represents a command to the other Cricket, which is expecting the number and knows
what to do when it getsit. However, in order to take full advantage of this ability with
many Crickets, we need to come up with a protocol to provide a bit more order.

Master/Slave

One possible protocol relies on having one Cricket being the ‘'master' and every other
Cricket taking commands from it (the slave). A dight variation of this has each Cricket
receive, execute, and pass on commands...acting at first like a slave ard then like a
master. For each of these protocols, a Cricket needs a unique identity and each command
also needs a unique ID.

A sample program:

;setup variables to store ID, comand
gl obal [identity conmmandl conmand2 ir_val]

to setup
setidentity 1 ;set identity to 1
set commandl 101 ;arbitrarily assign 101 to
; conmand 1
set command2 102
recei ve_conmmand ;junp to new procedure
end
to recei ve_conmmand
when [new r?] [ ;interupt on newir
if (ir = identity) [ ;are they talking to us?
wai tuntil [new r?] ;get the next ir
setir_val ir ;save it
I f ir_val = conmmandl [do_t his]
if ir_val = command2 [do_t hat]
send identity + 1 ;pass it on
wait 5

send ir_val

]

end

Who starts this process? What happens at the end? Can you get it to repeat itself?



We will now use the first protocol to create a collaborative work. Each personis
responsible for creating a surprising or dramatic behavior for their particular piece that
happens when their identity is received. Using the above example of code as the basis,
everyone must choose an identity (no repeats!) and write two procedures (do-this and do-
that) that will execute depending on whether the person before you sends you a 101 or a
102. The person with identity 1 will start the process. Make sure that the person after
you in within the line of sight so that the IR signa will be received successfully.

Tips:

The primitive newir? reports a'true' if there has been a new ir value come in since the
last time you checked the value of ir, in a statement such as if(ir = 2). In other words,
checking the value of ir clears the state of newir?. Store the value of 'ir" into a global if
you want to uses it value more than once, as it might change if another Cricket is sending
you more numbers.

Here is another master/dave example- figure out what it does!
global [identity ir_val]

to master
send 63
wait 5
If (newir?) [
setir_val ir
repeat ir_val [beep wait 5]
]

end

to sl ave
when[ new r ?] [
if (ir = 63)[send identity]

setidentity 5
end

Artists and their work to view and discuss:
Simon Penny - http://www.telefonica.es/fat/vida2/alife/apenny.html
Eduardo Kac http://www.ekac.org/dialogical.html



Activity Five: Organism and Machine

In this activity, we will explore two modes of interaction: organism like and machine-
like. We will construct two separate works, one that attempts to mimic organism like
interactions and one that behaves in a machine-like way. This areais difficult as there
are many complexities to grapple with. Artist Alan Rath, on the topic of behavioral
sculpture, said, “what is ‘interesting’ behavior lies between doing nothing and
randomness.” Hereisavery smple example of something machine-like that takes
advantage of the computers ability to store and recall information quickly.

The Cricket can store 2500 points of data. There are 1440 minutes in aday- lets keep
track of the light level once a minute all day long, then play it back in less than a minute!

to record-1ight

erase 2500 ;erase all data

repeat 1440 [record sensora wait 600] ;record |ight
val ues
end

to play-Iight

reset dp

repeat 1440 [cLED O O recall]
end

(To try this out, use a light sensor in sensor port A and a Tri-Color LED for playback.
Remove the wait 600 and run record-light. Then run play-light.)

Artists and their work to view and discuss.
Jenn Hall - http://www.dowhile.org/physical/projects/acupuncture/index.html
Simon Penny —

http://www-art.cfa.cmu.edu/Penny/works/stupi drobot/stupi drobotcode.html
Edward Ihnatowicz -

http://members.lycos.co.uk/zivanovic/senster/index.htm#T he%20Senster



Activity Six: Connecting to a Computer

The Seria Bus Device alows us to send and receive information with a computer. This
allows us to send sensor values to control onscreen graphics or have the computer send
commands to control the Cricket. Plug in the serial board to the Cricket, and connect it to
the computer via a seria cable. In the below example we will use the Proceb5ing
graphics environment to receive sensor values from the Cricket and manipulate graphics
based on these numbers. However, various other applications like Director (video) and
Max MSP (sound) can receive and handle seria data aswell.

Run this program on your Cricket:

to serial -test
| oop[
send-serial sensora

]

end

Now, shut down CricketLogo open up Proce55ing, click run, and open up
Sketchbook/Standard/SimpleSerialDemo.pde. Press the right triangle to run this

program. If all is successful, the square onscreen should change its hue based on the
sensor values.

Artists and their work to view and discuss:
Kenneth Rinaldo — http://www.ylem.org/artists/krinal do/index.html



Odds and Ends

Whereto get motors:
http://www.goldmine-elec.com/
http://www.allel ectronics.com/
http://www.mpja.com/
http://www.sciplus.com/

Old washing machines, dryers, coffee grinders, disk drives, toys, computer fans...try
running them from the Cricket at first, then from the Big Motor Bus Device. Look on the
motor for voltage and current ratings printed on the motor. Also, the Cricket can control
AC motors with the use of arelay. Buy one, and read about it. Use the motor port at full
power (setpower 8) to flip therelay. Be careful with AC, and only work with someone
who has done something similar before.

Look for 'gearhead’ motors for slow, powerful DC performance.

A little about Analog and Digital:

At the smplest level, analog means a system that uses continuously variable voltages to
relay information, while digital means that voltages are 'rounded off' to ahigh level and a
low level (in the Cricket and alot of other systems, thisis OV for low and 5V for high).
As said before, the sensor ports on the Cricket measure an analog voltage. The Cricket
then converts this analog voltage to a number value (the familiar 0-255). This processis
caled A/D conversion (for analog to digital).

Digital systems pass information by codes consisting of highs and lows. Remember high
school math, when you learned about base-2 numbers? That is finally important!
Numbers in base two (binary) are represented by 1'sand 0's. Thisisthe core of digital
systems; numbers are passed around in base two, where the zero's are the low (0V) and
the ones are the high (5V). The Cricket speaks digitally to the bus devices. The Cricket
communication system is based on codes consisting of 8 ones or zeros. The ones and
zeros are referred to as bits, and 8 bitsis called abyte. Back in decimal representation, 8
bits (1 byte) are capable of representing a number between 0 and 255. Ahal The
explanation of the mysterious 255!

Powering a Cricket from the wall socket:

To rid yourself of the need for batteries, you can build a power adapter for your Cricket.
Go to Radio Shack and buy a5V to 12V AC-to-DC adapter and a 9V battery clip (looks
like the top of a9V battery with ared and black leads coming from it. With the adaptor
unplugged, cut the end off and strip the leads. With the leads separated as not to touch
each other, plug the adaptor in and figure out with lead is positive and which is negative
with avoltmeter. (Ask someone to help you here, especidly if they own a voltmeter!).



Solder the negative end to the lead from the clip that is connected to the flanged side of
the 9V connector. (It is probably the red one, although don't trust me here. Why red?
The 9V battery clips are usually meant to clip a9V into, not to take the place of a 9V!
So, what we expect to be black (negative) is red (positive).) Solder the other lead of the
adaptor to the lead connected to the smooth connector on the clip. Now, with the
mulitmeter, make sure that the connector is the same as a9V battery (flanged connector
is negative, smooth one positive)! Be careful here, as a mixup here might kill your
Cricket. With that confirmed, tape up your solder joints and plug it in!

Making your own sensors:

The Cricket canread a value between OV and 5V. If you have a sensor that puts out an
analog voltage between these values, you can plug it directly into the Cricket. The first
dot up from the edge on the sensor port is the input. The second one is the ground. Plug
ground from your sensor into ground of the sensor port (2" slot up), and signal from your
sensor into the input (1% slot up). However, many sensors are resistive sensors, which
means that their resistance changes with environmental factors. The light sensor isan
example of this, asits resistance changes with the amount of light hitting it (try it with an
ohmmeter). For these types of sensors, we plug one end of the sensor into the 3 slot on
the sensor port, which is held stead at 5V. The other end then goes into the input (the 1%
dot). The sensor port has a built in voltage divider that converts a variable resistance to a
variable voltage when wired in this fashion. Try finding a force sensitive resistor or bend
sensor at Radio Shack and using in this manner.

Thingsyou know already:

This section provides analogies in CricketLogo to words you might come across in other
programming languages:

- Procedures, functions, methods
These are segments of code that perform some function. We have been calling them
procedures...anything that starts with ato and finishesin end.

-Variables

A variable alows for storage and manipulation of numbers in an abstract form. In
CricketLogo, these are: global [variablel variable2] where variablel and variable2 are
variables, of course.

-Recursion
Recursion is the method of calling a procedure from inside that same procedure.

to test
beep
t est
end



Or better, but slightly more complicated:
gl obal [vari abl el]

to test?2
recurse 1
end

to recurse :n
setvariablel :n + 1
di spl ay vari abl el

recurse vari abl el

end

-Arguments
A procedure can take one or more arguments as inputs or output one argument. Below,
‘n is the argument.

to beep-thismany :n
repeat :n [beep wait 2]
end

To use this procedure, we write:
to test
beep-t hi smany 12

end

- Conditionals or Condition checking
Checks a Boolean condition. Allows events to be conditional.

to checkl

loop [if (switcha) [beep]]
end
or:
to check?2

| oop[if (sensora > 200)[ beep]]
end

- Commenting and Reuse of Code
Commenting (text that isn’t part of the code, but explains what a piece does) allows for
other people to understand what your code does. Compartmentalizing code and using



arguments helps make your code reusable. In Cricketl ogo, comments are started with
the’;.

- Threads/Multitasking
Multitasking allows the computer to perform several tasks smultaneoudly. In
CricketLogo, our only multitasking ability is the when command.

to thread ;interrupts the | oop to beep when condition
is true

when [sw tcha] [ beep]

| oop[a, on wait 4 a, off wait 5 rd]
end

Useful books for going further in electronics, robotics, and sensors:

Robotic Explorations: A Hands-on Introduction to Engineering
Fred Martin

AddisonWesley

ISBN: 0130895687

Electronic Circuit Guidebook: Sensors
Joseph J. Carr

PROMT Publications

|SBN: 070610981

McGraw-Hill Benchtop Electronics Handbook
Victor Veley

McGraw-HIlI

ISBN: 0070674965

TAB Electronics Guide to Understanding Electricity and Electronics
G. Randy Stone

Tab Books

ISBN : 0070582165

The Art of Electronics

Paul Horowitz, T. Hayes
Cambridge University Press
ISBN: 0521377099

Handbook of Modern Sensors
Jacob Fraden

Springer
| SBN:1563965380

I nter esting reads regar ding inter active sculpture:



Beyond Modern Scul pture
Burnham, Jack
George Braziller, New York

Art of the Electronic Age
Popper, Frank

Thames and Hudson
ISBN 0-500-27918-7



