ACGP/CGP lil-gp 2.1;1.02
Technical & User’s Manual

version July 21, 2004
Cezary Z. Janikow?!

Department of Mathematics and Computer Science
University of Missouri — St. Louis
janikow@radom.umsl.edu

This document describes extensions to lil-gp facilitating dealing with constrains and heuristics, CGP - as
outline in [5], and to adapt those, ACGP - as outlined in [6][7]. ACGP lilgp 2.1;1.02 in built on the top of
CGP lil-gp 2.1;1.02. This document combines both the tech manuals for CGP2.1 as well as for ACGP2.1.

Both CGP2.1 and ACGP2.1 are based on lil-gp 1.02, and thus resulting extensions are referred to as CGP/
ACGP lil-gp 2.1;1.02 (the first version# is for the extension, the second for the utilized lil-gp version).
Unless explicitly needed to avoid confusion, version numbers are omitted.

CGP is a methodology to process both strong constraints and weak constraints (heuristics) in GP utilizing
tree representation. Both kinds of constraints are only first-order, that is constraints on parent-child
relationship (plus constraints on the root node). CGP2.1 is the resulting implementation. In CGP, trees
invalidating the strong constraints are never produced, while the heuristics are used as preference criteriafor
initialization, crossover and mutation.

ACGP is a methodology to adapt the employed heuristics to improve problem-solving. At present, the
improvement is based on both fithess and chromosome size, as determined by observing population
statistics.

ACGP v2.1 differs from ACGP v1.1 by collecting different distribution information since the information
expressed in v2.1 trees is richer than that in v1.1.1. The extended distribution information is also used to
generate differnt updates of the basic heuristics.

1 Overview

lil-gp 1.02 is a public domain tool [11] for developing Genetic Programming (GP) [8][9][10] applications. Itsimple-
mentation is based on the closure property [9], which statesthat every function can call any other function and that any
terminal can provide values for any function argument. Unfortunately, this property leads to many invalid programs
being evolved (invalid with respect to program syntax and semantics, and not program size limitation). In GB, thisis
dealt with by either penalizing such trees (e.g., by setting evaluation to 0), or by providing extended interpretations
(e.g., protected division [9], but these choices are arbitrary in general). The objectives of Constrained Genetic Pro-
gramming (CGP) isto provide mean to specify syntax and semantic constraints, and to provide mechanismsto enforce
them[4]. CGP lil-gp 1.02; 1.022 isthe result of implementing CGPinto lil-gp 1.02. CGP lilgp 1.1/1.02 (not distributed
as of now) extends the former. CGP lil-gp2.1/1.02 extends the | atter by dealing with different types. Please refer to lil-
gp for licensing information.

CGP lilgp 2.1/1.02 implements constraints processing plus it adds a few parameters over lil-gp 1.02. It is capable
of processing function constraints as outlined in [4][5]. It also has the abilities to process problem heuristics: in CGP
lil-gp 1.02 the constraints would determine what programs were considered valid, ond only those would evolve. How-
ever, except for the pressure of the evaluation, there was no other ways to differentiate between different pro-

1. Thisresearch was partly supported through NASA/JSC grant NAG 9-847 and FTTP summer programs.
2. http:/mwww.cs.umsl.edu/~janikow

grams.Starting with v1.1, CGP lil-gp allows the user to specify different weights to various elements of atree, based
on their context. For example, suppose there are three functions fy, f, , f3. CGP lil-gp 1.02 allows the user to restrict
arguments of f; to call upon f, and f5 only. CGP lil-gp 2.1 allows the user to additionally specify that out of those two
allowed functions, f, istwice as good a candidate. Work on automatically evolving those weightsisin progress (at the
moment they remain constant throught the run).

Finally, CGP lilgp 2.1/1.02 can a so process constraints based on data typing. For example, suppose that function
f1, requires two argumemnts. Suppose that it can deal with two integers, in which case the resulting type is an integer.
It can also deal with two floats, in which case the returned type is float. Upon mutation or crossover, the second child
of this hode can only be afunction returning integers if the first argument currently resturns integers. However, if the
first argument currentlyu returnsfloats, then the second child can be any function returning either integer or real (given
that integers are compatible with reals [4]).

Despite some redundancies among such type constraints and constraints processed in v1.02/1.1, no constraints
have been removed. Thisway the user has the option to use either constraint specification means.

2 CGP Application Environment

Figure 1 The CGP lil-gp environment.

Function and terminal sets

Constraint Normal
form

Specifications

<> lil-gp

Theenvironment for CGP lil-gp, and its CGP and lil-gp elementsare presented in Figure 1. Asindicated, the user inter-
actswith CGP lil-gp (all interfaces of lil-gp are preserved intact and are not shown) by specifying problem constraints
in the constraint language (see Section 4.1 for explanations and examples). CSL constraints are transformed into the
normal form [5] and stored in so called mutation sets. Finally, lil-gp interacts with the mutation sets. The result of this
interaction is arestriction on lil-gp’s space of evolved programs into only those satisfying the constraints.

Figure 2 Another look at the application environment of GP (left) and CGP(right).

Unpruned uniform
distribution

Pruned non-uniform
distribution

Mutation/Crossover Mutation/Crossover
P Pi+ 1 P Pi+l
Reproduction Reproduction

The CSL-expressed constraints must refer to the specific application, identified by the set of functions and termi-
nals (but not the evaluation function) the user defines for lil-gp. Thus, these sets must be made available to CGP pro-
cessing.

CSL

3 Overview of lil-gp M odifications

Disregarding many elements not affected by (affecting) the merger between CGP and lil-gp, the dataflow architecture
of lil-gp 1.02 can be simplified to that of Figure 3. £set isthe lil-gp’s data structure storing the user provided defini-
tions for functions and terminals. These definitions are needed to generate theinitial programs, to apply mutation and
crossover, and to evaluate evolving programs.

Figure 3 lil-gp’s architecture (highly abstracted).

‘ fset

C?ead functions & \ [

terminals creating fsy

Generate population
of programs P

Ve

Generate P’ by
selection, <
mutation, crossover

r

(Evaluate P > P=pP

i

(Check termi nation>

<&

To create CGP lil-gp, we have implemented minimal changesinto lil-gp. Thiswill facilitate other extensions, as
well asit will allow relatively easy upgrades to future versions of lil-gp. In fact, no lil-gp’s user nor internal interfaces
has been modified. These modifications/extensions are illustrated in Figure 4 with dotted lines. The changes can be
summarized as follows:

1. After £set setsareread and stored by lil-gp (and after the functions are ordered in lil-gp 1.02 and later), anew
module create MS czjiscalled. Thismodule accessesglobal fset to obtain information about functions/ter-
minals, and based on that information it interacts with the user to read the problem constraints. At the moment,
avery smpleinterface is provided, but it may be replaced with any other interface at alater stage.

2. Congtraints are transformed into the normal form, and expressed as mutation setsMS_czj, which datais global
and available to lil-gp.

3. Population initialization, mutation, and crossover of lil-gp are modified to interact with MS_czj in preserving
the integrity of the generated and explored programs with respect with the user-specified constraints. The first
two have minimal changes. Crossover have been reimplemented.

In addition, CGP lil-gp 1.1 provides a few minor modifications over lil-gp 1.02, which we felt were sometimes

desired (default behavior is equivalent to lil-gp’s):

1. Several new parameters are added to those of lil-gp:

a Initializtion parameters init.depth abs, ={ true,false}, default=false

In the default mode, this parameter has no effect over lil-gp 1.02

When set, init.depth=m-nwill cause rejection of initial trees shallower than m
b. Mutation parameter depth abs, ={ true,false}, default=false

In the default mode, this parameter has no effect over lil-gp 1.02

When set, depth=m-n will cause rejection of mutation offspring shallower than m

(itisagood ideato have keep trying setto true aswell)

¢. Additional parameters have been added to the Crossover parameters.
The internal and external parametersare replaced with 2 pair of parameterswhich seperate their func-
tionality between the source and destination parents. The new parameters are:

. internal (internal nodes in source parent), default = 0.9
. internal dst (internal nodes in destination parent), default = internal
. external (externa nodesin source parent), default = 0.1
. external dst (external nodesin destination parent), default = external

These act the sameway asin lil-gp 1.02 except that they allow there to be different frequencies for inter-
nal/external node selection in the source and destination parents.

d. Crossover parameters internal & external have been extended. Using them in the normal way results
in standard lil-gp 1.02 operation. Two extra parameters have been added internal dst &
external dst. Both default to the matching internal & external values. These alow different inter-
nal/external selection frequencies to be selected for source and destination trees.

2. A new crossover-like operator has been added; collapse. Collapse acts like crossover except that only one par-
ent isused, and the source subtree is selected from within the destination subtree. More information on this can
be found in the Users Manual .

3. function's index member is adjusted after functions are sorted by lil-gp (if at all). lil-gp 1.02 is apparently
not using this member except for setting it improperly, CGP lil-gp 1.1isusing it thusit updatesit after sorting.
In addition, the sorting function used by gsort has been modified to sort first by arity and then alphabetically
by function name. This was to resolve different sorting results on different platforms.

Except for these, no other changesin lil-gp 1.02 are implemented. Note that since lil-gp does not deal with sets
but only with functions (terminals are not specified by sets but by generating functions) the implementation and inter-
face will somehow divert from those outlined in [4] (consult [5] instead).

It isimportant to note that actual mutation and initialization are not modified directly. Instead, the low level func-
tions generating subtrees have been modified. All modifications can be accessed by searching for czj string, except
for the crossover operator (cperator crossover ()) which has been completely rewritten.

Note that CGP lil-gp 1.1/1.02 does not deal with ADFs[10] at the moment, but an extension is planned for the
near future.

Figure 4 CGP lil-gp’'s architecture (highly abstracted).

(Read functions & \ |

terminals creating Fy

Generate population
of programs P
create MS czj

/S s
/" Readftransform Seleggamep by
. constraints into normal; Ion, -
_formMs_czj (Mutafion, crossov

_____ o

< Evaluate P) p=p

i

<Check termination)

% MS czj <v/

4 Technical Manual for CGP 2.1

The methodology for processing problem constraintsis presented in [5]. Here we present necessary details for under-
standing what kinds of constrains, and how, can be used in CGP lil-gp 1.1/1.02.

fset

4.1 CSL constraint specifications

lil-gp 1.02 does not provide for explicit (neither extensive nor even intensive) set specifications for terminals. Instead,
sets are defined by functions generating random elements, which are provided by the user. Accordingly, disregarding
ADFs, there are three different kinds of functions—we will call them functions of typel, Il, and 111, and their sets will
be denoted as Fy, Fy;, and F;;. Unless explicitly stated, all referencesto functionsimply all function types (denoted F),
and al referencesto terminalsimply functions of type Il and I11. It isimportant to mention that lil-gp 1.02 orders func-
tions of f£set so that type | functions precede al other functions.

Definition 1 A function appearing in a node of a treeis said to label that node.

I. Ordinary functions. These are functions of at least one arguments. Therefore, they will 1abel the internal nodes.

[1. Ordinary terminal. These are functions of no arguments. Therefore, they can label the external nodes. How-
ever, they are not instantiated in atree —they are instantiated at evaluation by external data.

I11.Ephemeral random constant terminal. These are functions of no arguments. Therefore, they can label the exter-
nal nodes. Moreover, they are instantiated (possibly differently) in each appearance in each tree.

Example 1 Follow the lawnmower example from lil-gp 1.02 User’s Manual, section 6.3.1. Disregarding ADFs,
there are three type | functions (F={frog, vma, prog2}), with a; = 1,a, = 2,a; = 2, two type Il functions
(F,={I€ft, mow}), and one function of type 11 (F;;;={ Rvm}).

Definition 2 Let us define set compatibility denoted =. That is, X = Y meansthat the set X can replace the
set Y. When speaking of functions, a set indicates the range of the function. When speaking of function
arguments, a set indicates the domain of the argument. When speaking of a programtree, a set indicates the
range of the function labeling the Root hode. When speaking of problem specifications, a set indicates the

range of values to be returned by a program.

Proposition 1 X=> Y& XcY.

- X=Y meansthat in placeswhere valuesfromY are valid one may place any valuefrom X, or any function
returning a value from X. To guarantee that no out-of-domain values are used for the original Y, X may not
contain values not found in Y. Therefore, it must be a subset of Y, or it must equal Y.

Proposition 1 will help the user determine and specify the constraints. Unfortunately, it cannot be automated since
lil-gp does not operate on explicit (neither intensive nor extensive) set definitions.

Definition 3 Define the following Tspecs (syntactic constraints):
i) TR*OOt —the set of functions which return data type compatible with the problem specification.
i) T. — TJi is the set of functions compatible with the jth argument of f; .

Interms of alabeled tree, TR isthe set of functions which, according to data types, can possibly label the Root

node. TJi is the set of functions that can possibly label the jth child node of anode labeled f; .

Tspecs reduce both the space of program templates (and thus structures) and the space of instances of those struc-
tures. Therefore, they are very powerful constraints. lil-gp allows any function of type| to label any internal node, and
any function of typell and I11 to label any external node. Obviously, thisisnot truein actual programs— different func-
tions take different arguments and return different ranges. Tspecs allow expressing such differences, thus allowing
reduction in the space of program instances per program structure. Moreover, some Tspecs also implicitly restrict what
function can call other functions, effectively reducing the space of possible program templates. Therefore, some Tspecs
can be seen anal ogous to function prototypes available in high level languages.

Example 2 Assume F, = {f,f,, f;} with arities 3, 2, and 1, respectively. Assume F, = {f,} and

Fi = {fs, fs f;} . Assume that the three type Il functions generate random boolean, integers, and redls,
respectively. Assume f, readsan integer. Assume f; takesboolean and two integers, respectively, and returnsa
real value. Assume f, takestwo reals and returns areal. Assume f; takes areal and returns an integer. Also
assume that the problem specifications state that a solution program should compute a real number. These
assumptions are expressed with the following Tspecs:

= {fl, fz, f3, f4, fe, f7}
Ti = {f5}, Ti = {fg, f4: fs}, T? = {fg, f4, fs}
T; = {fl, fz, f3, f4, fe, f7}, Tg = {fl, fz, fg, f4, fs, f7}

Té = {fy, fp f5, fy, T, 73

Note that in Example 2 Proposition 1 is used by making integers compatible with reals (but not the other way
around). The example also assumes that booleans are not compatible with integers (nor with reals), which assumption
can be reversed by assuming additional interpretations (such as those in the C programming language).

However, syntactic fit does not necessarily mean that afunction should call another function. One needs additional
specifications based on program semantics. These are provided by means of Fspecs, which further restrict the space
of program templ ates.

Root
T

Definition 4 Define the following Fspecs (semantic constraints):

i) FR°°" _the set of functions disallowed at the Root.

i) F. — F; isthe set of type | functions disallowed as direct callersto f; (generally, a function is unaware
of the caller; however, GP constructsa programtree, which represents the dynamic structure of the program).
iii) F. — F! isthe set of functions disallowed as arg; to f; .

Example 3 Continue Example 2. Assume that we know that the sensor reading function f, doesnot provide the
solution to our problem. We also know that a boolean value (generated by fg) cannot be the answer (this
information is redundant as it is provided in Tspecs). Also assume that for some semantic reasons we wish to
exclude f; from calling itself (e.g., thisis the integer-part function, which yields identity when applied to itself).
These constraints are expressed with the following Fspecs (the other sets are empty):

Root

F = {f,, s}
Fs; = {fs}
4.2 Transformation of the CSL Constraints

421 Normal form

Given the above Tspecs and Fspecs, which can be used to express some problem constraints (those expressible with
this language), an obvious issue is that of possible redundancies, or that of existence of sufficiently minimal specifi-
cations. Surprisingly, after certain transformations, only a subset of Tspecs and Fspecswill turn out to be sufficient to
express al such (though not all in genera) constraints. This observation is extremely important, as it will allow effi-
cient constraint enforcement mechanisms after some initial preprocessing.

The sufficient minimal set is thus important for efficient constraint processing, but not for constraint specifica-
tions, which are more easily expressed with the original Tspecs and Fspecs. Thisiswhy we need both, along with the
necessary transformations (see Figure 1).

The normal formisaset of F°* and al F. constraints (properly transformed, see[5]).

Proposition 2 The normal formis sufficient to express all constraints of the Tspec/Fspec language.

= [5]
Example 4 Constraints of Example 2 and Example 3 have the following normal form:
Root

F = {f47 f55 fﬁ}
Fi = {fl, fz, fg, f4, fs, f7}, Fi = {fl, fz, f5, f7}, Fi = {fl, fz, f5, f7}
F3 = {fs}. Fi = {fs}

F; = {f5 s}

The normal form expresses the constraints. According to Figure 1, these transformed constraints are consulted by
GPto restrict the search space. According to Figure 4, initialization, mutation, and crossover consult the constraintsin
CGP lil-gp. An obvious question remains. how those operators can use the information. We propose to express the
normal form differently —in mutation sets — to facilitate efficient consultations.

422 Mutation sets
lil-gp allows parameters determining how deep to grow a subtree while in mutation. That is, lil-gp alows differentia-
tion between functions of type | and terminal nodes (labeled with type 11 or 111). We need to provide for the same capa-
bilities.

Definition 5 Define Fy to bethe set of functions of type | that can label (thus, excluding useless functions)

node N without invalidating an otherwise valid program tree containing the node. Define Ty, to be the set of
terminal functions that can label node N (making it a leaf) the same way.

Definition 6 Let usdenote Tg,,; and Fg,,; thepair of mutation sets associated with the Root. Let us denote
T! and F/ the pair of mutation sets for the jth child of a node labeled with f; .

Theinformation expressed in the normal form can be expressed with 2 - (1 + zli" L a;) different function sets[5],

while only two sets (one pair, expressed in fset) are needed in lil-gp itself. These sets alone are sufficient to initialize
CGP lil-gp programs with only valid trees, to mutate valid trees into valid trees, and to crossover valid treesinto valid
trees [5].

423 Constraint feasibility

Unfortunately constraints may be so severe that only empty or only infinite trees are valid. This would be detected in
the initialization when no trees could be generated. However, this could be detected earlier, and the troublesome func-
tions can be identified and possibly removed from the function set.

Thisfeature is not fully implemented as of now — the only check is to ensure that no function has both mutation

sets empty, which in fact detects useless functions [5].

424 CGP lil-gp mutation

lil-gp mutates atree by selecting a random node (different probabilities for internal and external nodes). The mutated
node becomes the root of a subtree, which is grown as determined by some parameters. To stop growing, aterminal
function is used as the label. To force growing, atype | function is used as the label. Because we separate the same
type | and terminal functions (type Il and I11), we can use exactly the same mechanisms. The only differenceisthat to
label anode a subset of the original functions are used.

Operator ‘mutation’. To mutate a node N, first determine the kind of the node (either the Root, or otherwise
what isthe label of the parent and which child of that parent N is). If the growth isto continue, label the node
with a random element of F and continue growing the proper number of subtrees, each grown recursively
with the same mutation operator. Otherwise, select a random element of Ty , instantiate it if from F;,, , and
stop expanding N.

If growing atreeand Fy = & , then select a member of T (guaranteed not to be empty). If stopping the
growth and Ty = &, then select a member of Fy (this will unfortunately extend the tree, but it is
guaranteed to stop if constraints feasiblity are fully checked).

Proposition 3 If avalid treeis selected for mutation, mutation will always produce a valid tree. Moreover,
thisis done with only constant overhead.

2 [5].
Based on the problem-specific constraints, it may happen that a function will be only allowed to call other typel

functions. In the tree, it means that a node being the corresponding child of another node labeled with such afunction
cannot mutate to become a leaf.

Example5 Assume the normal form of Example 4. Assume mutating parentl asin Figure 5. Assume the node
N is selected for mutation. It isthe 1st child of anode labeled with f5 . T31 = {f,fe, f;} and F31 = {f,f,} .
If the current mode is to grow the tree, then the mutated node will be randomly labeled with either f; or f, . If
the current node is to generate aleaf, then label N with either f, , g, or f;.

Example 6 Suppose the constraints are so severe that Fkoot = . Inthis case, the only possible programs are
made of single nodes labeled with functions of type |l and type I11. While this cannot make a good program, it is
our a$umPtion that the user specifies the ‘right’ constraints for the problem. In some cases it may happen that
both F*°° = @ and T™° = @ . In this case no programs can be constructed at all — this means that there are
no valid solutions made of the available functions.

425 CGP lil-gpinitialization

Operator ‘createavalidtree’. Assumethat Troo # D v Froo # <, @and that functions which can only label
trees which cannot be instantiated with finite valid trees are removed from the mutation sets. To generate a
valid random tree, create the Root node, and mutate it using the mutation operator.

Proposition 4 Operator ‘create a valid tree’ will create a tree with at least one node, the tree will be finite
and valid with respect to CSL constraints.

- [5].

42.6 CGP lil-gp crossover

The idea to be followed is to generate one offspring by replacing a selected subtree from parent 1 with a subtree

selected from parent2. To generate two offspring, the same is repeated after swapping the parents.
Operator ‘crossover’. Suppose that node N from parentl is selected to receive the material from parent 2.
First determine Fy and Ty . Assume that F, is the set of labels appearing in parent2. Then,
(FyU Ty) N F, is the set of labels determining which subtrees from parent2 can replace the subtree of

parentl starting with N. In other words, any subtree of parent 2 whose root is labeled with one of
(Fyw Ty) N F, isavalid candidate for this operator.

Figure 5 lllustration of mutation and crossover.
parentl parent2

OBONRC ©,
node N @ @
(® Da— g

crossover

Example7 Assumethe normal form of Example 4. Assume parentl and parent2 asin Figure 5. Assume the node
N is selected for replacing with a subtree of parent2. It is the 1st child of a node labeled with f; . Then,

T3l = {f, e f;} and F3l = {f,,f,} , and only the subtrees with the shaded roots can be used to replace N.
Crossover would select arandom subtree from so selected set. Note that preferences on replacing with leaves vs.
internal nodes can be imposed on the process.

Proposition 5 If two valid parents are selected for crossover, up to two valid offspring will be generated and
no invalid offspring will be generated. Moreover, this is done with the same complexity O(n) as lil-gp’s
crossover (nistheesize).

:[5].
4.3 Overview of M odifications

All new functions have been implemented in cgp_czj .c. To avoid modifications of existing prototypes, all new data
isglobal. All new prototypes and declarations are provided in cgp_czj .h.

Except for operator crossover(), in crossovr.c, and generate random full tree()/
generate random grow_tree(), in tree.c, which has been rewritten, very minor changes have been introduced to
existing code. All other changes can be accessed by searching czj. All affected fileshave czj commentsin the header.

cgp2_czj.c/h provide utilitiesfor handling the constraint interface file, with their own functions and global vari-
ables. Reading constraints/heuristics info out of the file is designed as a preprocessor to cgp2.1, generating the actual
inpout file expected (temporary or retained depending on the cgp _input parameter). Details are not described in this
manual.

4.4 Detailed Changesfor Constraints

4.4.1 1node

1node has been changed to struct from union to accommodate two new members members: wheelExt czj and
wheelInt czj. Theseaccummulate weightsfor feasible sourcesfor crossover. In other words, these two members cre-
ate roulette wheel for crossover, distributed over all nodes plausinble for agiven crossover, separately for external and
internal node crossover.

In addition, thereisthe typevec czj member, which isthe index of the type vector in TP_czj, which itself spec-
ifies which overloaded instance of the function labeling the node was in use. For example, if the node is for function
k (using thefset ordering aftrer sorting), then TP_czj [K] . £.typeVecs [typeVec czj] isthearray indicating thetypes
of arguments and the returning type as currently used by the function k.

442 Global variables and functions (those accessable outside cgp czj.c)
Variables:
1. MST czj
Stores mutation sets, aong with heuristic weights and roul ette wheels constructed for these. The datais repre-
sented separately for each function (and Root), each argument of a function, and each type to be produced by

an argument of afunction.

2. TP czj
For terminals/Root, the returning type.
For functions, this data structure provides the polymorphic information: types that can be generated and argu-
ment types required.

3. Function czj
The node to be modified has this parent. If the node to be modified is the Root then thisis the number of type
| functions (pointing to the index for the Root in the MST_czj array).

4. Argument czj
The node to be modified is this argument of its parent, O if the node is the Root (thisindicates the index in the
MST czj[Function czj] array.

5. Type czj
The return type expected by Function czj on its Argument czj. For the Root, it iS TP _czj [NumFT] . ret-
Type. Thisindicatestheindex inthearray MST czj[Function czj][Arg czj]. (NumF and NumT are the number
of functions Type | and the number of terminals (type Il and 111).

6. const int RepeatsSrc czj
Used in crossover to specify how many new destinations can be tried if no feasible sources are found.

7. const int RepeatsBad czj
Used in crossover to specify how many new sources can betried if the resulting tree is too big.

Functions:

1. void create czj (void)
Called to read dl info and create the global vars.

2. int random F czj (void)/random T czj (void)/random FT czj (void)
Replace callsto random int () in generate () functions so that only indexes which label feasible nodes (and
proportional to weights) are returned.

3. int verify tree czj (lnode *tree)
Debugging functionsto verify that offspring are indeed constraint-valid.

4. int markXNodes czj(lnode *data)
Called from crossover to mark feasible nodes (for Function czj and Argument czj parent), while creating
the crossover wheel as well. Returns the number of marked nodes.

5. Inode *getSubtreeMarked czj (lnode *data, int intExt)
Called after markxXNodes czj () to select one of the marked nodes (by spinning the crossover wheel). intExt
specifieswhether any (0), internal (1), or external (2) node is sought. Will switch to any (0) if no desired hodes
were marked.

443 Main loop
create czj () iscalled after £set is sorted.

444 Initialization

Function czj=NumF, Argument czj=0, Type czj=TP czj [NumF+NumT] .retType are set at start to indicate that a
tree is generated from the Root. All other changes are in generate functions.

445 Mutation
No explicit changes. All changesin generate () and get_subtree () functions.

4.4.6 Crossover

Crossover hasbeen rewritten. It consists of two crossovers, where the two parents are exchanged between the two oper-
ations. Thisis not essential, but it increases chances of generating feasible offspring for heavily constrained problems.

447 generate () functions

generate () functions are used grow subtrees. They are used in initialization and mutation. They are rewritten so that
in labeling nodes they consult MST czj in order to create feasible labeling. Also, dueto constraints, it is possible that

10

the function or terminal, even if needed, cannot be generated. Label is selected with a probability proportional to its
weight in the appriate mutation set.

4.4.8 get subtree()

get subtree() islil-gp’s function to select the subtree identified by an argument. It is modified so that it updates
Function czj, Argument czj, Type czj variablesto indicate who is the parent of that subtree and what type is
needed.

449 Data structurefor MST czj

MST czj stores the mutation sets, that is for a given function/Root (node) it gives information about what functions/
terminals can label an argument (child) if agiven typeisrequired from the child. It does not deal with the polymorphic
instances (TP czj does). . The number of elements per set may vary between zero and |F|| for F, and zero to
|FII +Fy I| for T. The sets are stored separately for each function (followed by the Root), each argument of the func-
tion, and each type that can be returned on this argument.

We use exactly the same ordering as that of functions of type | and terminals (type Il and I11) in the functionstable
of lil-gp (after sorting, which sorts by arity decreasing, then lexicographically increasing). The first is an array of
1+ |F | of pointersto other arrays dealing with individual ordinary functions of type| (plusthelast entry for the Root).
These pointers will point to other arrays of structures.

MST_czj [i] will refer to type | function at index i in fset. The last entry (index [|F|]) will refer to Root. The
array for function f; will have exactly a; elements. which point to an array of structures, one structure per each type
in the application. Each structure deal s with one argument-type of the function, and represents the mutation set for this
function, argument, type, along with the roul ette wheel used by mutation and the weights used to construct the on-the-
fly distributed roulette wheel for crossover. See Figure 6 for an example.

Weights are only read for the members, others weights are set to -1. Any input weight <MINWGHT is changed to
MINWGHT. Any weight equal MINWGHT (double equality uses epsilon SMAILL) does not get any area allocated on the wheel
(mutation wheel isillustrated in Figure 6, crossover wheels are implicit on the trees).

Figure 6 Partialy allocated and instantiated MST czj structure for the mutation sets of Example 4. .

MST czj NunTypes NumTypes

Y JmE=s N
numT=3
areFs=1

< areTs=1

f; numFT—

whe

=Y

.numF .t

Root 1| 2| 3| 4| 6| 7

1| 1| 11 21 31 41

Note: in the Root element, the 2nd level
array isof length 1, and the 3rd level array .

has the members allocated for only the 10 004 01)10} -1) 10 10
index corresponding to the Root’s retType " NumT
Note: for other functions, the 3rd level members allocatueu(I:]FonIy for types produced by the function

Example 8 Figure6illustratesMST czj for mutation sets pair F 11 and Tll . Assumetheweightsare 1.0, 0.01, 0.1,
1.0, 1.0, and 1.0 for the members (assume 0.01 is MINWGHT and thus does not get anything allocated on the wheel
(and is not considered for areFs). The last element in the 3rd level array, at index NumTypes, is for untyped info,
which eventually is used to initialize the remaining typed information.

For each argument-type, we have the numnber of functions (1) and terminals (11+l11) in the mutation set (rumF and

11

nunT). mbs array is alocated for the total of these, and so is the wheel, while the weights array is alocated for all
functions and terminals. Weight -1 indicates absence of the element in this mutation set (and absence in mbs and in
wheel). Presence but with 0 weight is indicated by MINWGHT value and thus non-zero (again, these are non-zero for
future processing but currently not counted in numF,/T and areFs/Ts). Note that areFs != ! !numFs (Ssame for Ts).
numF counts the number of functions in the mutation set. However, the functions can be set or not to MINWGHT. Thisis
what areFs indicates.

This structure will be alocated and initialized by void create czj (void).

To redirect consulting from fset to MST czj, we will replace the existing callsto int random int (int) with
calsto int random F czj (void), int random T czj (void), int random F czj (void), appropriately when a
function to grow is needed, a function to terminate growth is needed, or a random function is needed. These random
functions will consult MST czj. When a particular function is not available (i.e., when the mutation set is empty, the
other (T and F) set will be used (both empty is an error).

4410 Data Sructuresfor TP_czj

The TP_czj data structure is illustrated in.Figure 7. It stores information about polymorphic instances of overloaded
functions, and about data types returned by terminals and tthe Root. In the part dealing with the functions, all over-
loaded instances are recorded. In theillustration,there are two types, and the function f, hastwo arguments. It hasthree
polymorphic instances, represented in the 2-d array typeVecs. Thefirst instance (. £. typeVecs [0]) producestype 0,
while the two other instances (. f£.typeVecs [1] and . f.typeVecs [2]) produce type 1. The number and location of
the actual instancesarerecorded in indexes [1] (for type 1). 1en=2 indicatestwoinstances, and indexes [1] . indexes
isthearray listing the row numbersin the 2-d array typeVecs where the actual instances are represented. In the exam-
ple, the first instance (.f.typeVecs[1]) requires type 0 and 1 on the arguments, respectively, while the second
instance requires type 1 and 1.

Figure7 TP czj data structure. Thefirst array is of aunion type over functions and terminal ’Root.

retType
TP czj aj /
f struct member ﬁ c
TIUMA=2 0
NumF| nunTypeVecs=3 11 o] 1] 1 unl'ypeVecs
typeVecs
f. Q indexes 241 1)1
|
NumTypes
1
to /O\
NumT
§
Q len=2
indexes 112
Root retType
Note: len=0 and indexes=NULL

if fi cannot produce this type number

4411 HowtheMST_cz and TP_czj Data Sructuresare used

4.4.11.1 Initialization

1. Function czj=NumF pointing to MST [NumF] containing the Root info

2. Argument czj=0 since Root has only one info

3. Type ¢zj=TP_czj [NumF+NUT] . retType fetch the Root’s returning type

4. Proceed with growing atree asin mutation, except for different parameters controlling the growth.
4.4.11.2 Mutations

1. Prepare

12

* Function czj must be set to indicate the parent function index (NumF if mutating the Root).

e Argument czj must be set to indicate which argument of the parent we are mutating (O if the Root).

» Type_czj must be set to the desired type to be generate. If thisisthe Root node, it is TP [NumFT] . ret-
Type. Otherwise, it we take the .typeVec member from the parent node. We then fetch
Type czj=TP[Function czj].f.typeVecs [parentNode.typeVec] [Argument czj].

2. Spin the wheel for the proper mutation set: MST czj [Function czj] {Argument czj] [Type czj] .wheel
selecting say index k. Note that the wheel can be span seperately for selecting functions or terminals or both
depending on context and parameters).

Thisis donethrough callsto random F czj ()/random T czj () and random FT czj () respectively.

3. After theindex kto label the mutated node is selected
o If krefersto aterminal, just 1abel the node
« If krefersto afunction, then must select the overloaded instance of the function and contiunue recur-

sively for al children according to the typevecs information for the instance.
» select the instance as arandom element’s value from the array
n=TP czj [k] .f.indexes[Type czj].indexes
(array of length TP _czj [k] .£.indexes [Type czj] .len)
» select the instance represented by TP czj [k] .£. typeVecs [n] (and storein node. typeVvec).
» continue for all children

4.4.11.3 Crossovers

1. Crossover is prepared as in mutation, according to the parent of the destination subtree.

2. After the destination is selected, the source tree is traversed, and the wheel is constructed, using
markXNodes_czj (). The nodes that are labeled with elements of the mutation set for the destination element
(based on its parent) are used to constructed the distributed roul ette wheel, according to the heuristic weights
from the mutation set, and using the two extra members of the Inode.

3. Thetotasof thewheel (external or external as needed) is used to spin the roulette, and the position of the node
is determined. Then a second traversal selects the node at this position from among those marked, using
getSubtreeMarked czj ().

4.4.12 Function/Type Information in the Tree Sructure

Figure 8 Theinformation in the tree structurein CGP1.1 (left) andA CGP2.1 (right). From among the old 1node
membersonly £ isshown. Also not shown are wheelExt czj/wheelInt czj memberswhich are used for
the distributed roulette. The typeVec czj member isactualy anindex to TP_czj.

return type
a /

to tl t

f.

1

typeVec czj

£

typeVec czj typeVec czj

Figure 8 illustrates the function/type information maintained in the tree (in the Inodes). The wheelExt czj/
wheelInt czj arethe membersused to construct the distributed crossover roulette wheel and not used. As seen, each
node remembers not only the function (terminal) being the label, but aso the actua overloaded instance
(typeVec_czj). Theinstance says what are types expected of the children and then what is the type produced by the
node.

13

5 User Manual for CGP2.1
5.1 Strong Constraints. Tspec/ Fspec Constraints

Tspecs and Fspecs are sets of functions and terminals with some common characteristic.

» Tspecs are those functions/terminals which are compatible with a specific argument of a function
(T_func_n), and those functions/terminals allowed to be the Root (T _Root). (Syntactic constraint)

» Fspecs are those functions/terminals which are not compatible as a specific argument of a function
(F_func_n), those functions which are not allowed to directly call agiven function (F_func), and
also those functions/terminals not allowed to be the Root (F_Root). (semantic constraint)

When specifying these constraints you must specify Tspecs for everything you wish to allow. The Tspecs and
Fspecs are converted to their Normal form, consisting entirely of Fspecs. These Normal Form Fspecs are what are used
to construct the Untyped Mutation Sets (see Section 5.4).

511 Tspec / Fspec Example
Listed here, in the order that they are requested in the interactive user interface are some example Fspecs and Tspecs.

Example9 F_add = sin cos
This prevents sin() and cos() from calling add (e.g. sin(x+y) is not alowed).

Example1l0 F add 0 = 0 PI log
This prevents 0, PI, log() from being argument 0 of add (e.g. (Pl + X) isnot alowed, but (x + PI) may be).

Example1ll T add 0 = sin cos 0 PI
This alows sin(), cos(), 0, and Pl to be argument 0 of add. However, the Fspec, F_add_0, overrides this Tspec,
and so only sin() and cos() are actually allowed.

Examplel2 F add 1 = 0 PI
This prevents 0, PI from being argument 1of add (e.g. (x + PI) is not alowed).

Example13 T add 1 = sin cos 0 PI
This alowssin(), cos(), 0, and Pl to be argument 1of add. However, the Fspec, F_add_1, overrides this Tspec,
and so only sin() and cos() are actually allowed.

Example14 F ROOT = log 0 PI
This prevents the function 1og, and the terminals 0 and PI from being the Root.

Example15 T ROOT = add sin cos
This allows the functions add, sin, and cos to be the Root.

5.2 Weak Constraints (Heuristics): Weight Constraints

Normally al functions/terminals have the same probability of being selected to be used as an argument to a function.
The Weights section of the interface allows you to change this default behavior. The Weight constraints do not affect
nor interact with Type constraints.

Theweight of any function/terminal isin the range (0,1]. Using only the Weight constraints, you cannot absolutely
prevent afunction/terminal from being used. Thisis because any weight specified as0 (Zero) is converted to adefined
constant MINWGHT =~ 0.00001, definedinkernel*/cgp czj . c.|If you desireto absolutely prevent afunction/ter-
minal from being used, you need to specify the appropriate Fspec.

When you are given the chance to enter the weights, only those function/terminals which appear in the Untyped
Mutations Set are used (see Section 5.4). So, if a function is disallowed through Fspecs, you are not asked for the
weight for it.

Currently, the weights remain constant throughout the execution of the program. Work is currently underway to
implement mechanisms for the automatic adjusting of the weights during program execution.

521 Weight Constraint Example
Example 16 Assume we have 4 functions(f1, f2, {3, f4) and 4 terminals(t1, t2, t3, t4). Through Fspecs, t2 was

14

excluded from being an argument to function fn. Then the weights are given as f1=1.0, f2=0.0, f3=0.1, t1=1.0,
t3=1.0, t4=1.0. Thetota weight of all function/terminalsfor thisargument =f1+f2+f3+t1+t3+t4=4.1. The
probability p(), of any function/terminal being selected as this particular argument is p((f/t)n) = ((f/t)n) / (total
weight). So p(f1,t1,t3,t4) = 1.0/4.1 = 0.244, p(f2) = MINWGHT/4.1 = 2.439x10°° , p(f3) = 0.1/4.1 = 0.0244, p(t2)
=0.0.

53 TypeConstraints

Type constraints provide additional method of strongly constraining the mutation sets. Without type constraints it
would be possible, with normal arithmetical and trigonometric functions, to generate a subtree which would evaluate
to: asin(x) + sin(x),which under normal circumstances doesn’'t make much sense. With the type constraints,
add () can beinstructed not to add a non-angle with an angle, etc. (Note: The type constraints do not in any way
perform type casting of functions, terminals, or arguments. If a function isto be able to accept multiple data
types, then the function must bewritten in such a way asto makethat possible.)

It can prevent occurrences of subtrees like that shown in Example 17, or Example 18, if that kind of restriction is
what you would desire.

Example 17 sin (mult (PI,sin(sqrt (PI))))

Example 18 If there are variables of various units, such as S(seconds), M(mass), D(distance), T(temperature),
then subtrees like this could be avoided: add (add (S, M) , add (D, T)).

531 Type Constraint Example

To begin with, you specify every data type that your problem uses. (Note: The data types specified here do not
necessarily have anything to dowith the actual data types of your functions/ter minals/arguments) Then, starting
with the highest arity (argument count) functions working down to the terminals, and sorted alphabetically, every
instance of a function is listed. with its arguments and return type (see Example 19). After listing every instance of
every function, the return types of each of the terminals and of the root of the problem are listed.

Example 19 There may be a problem needing datatypes: angle, length, force, force-length, and number. And, the
multiply () function which takes 2 arguments could have the following instances (vectors).

<argl> <argZ2> <return>

number length length

length number length

number angle angle

angle number angle
number number number
length force force-length
force length force-length

All of thismeansthat if multiply () iscalled with anumber and alength, it will return alength. If it iscalled
with anumber and an angle, it will return an angle. If it is called with two numbers it just returns anumber. And,
if itiscalled with alength and aforce, it returns aforce-length (e.g. 3 1bs. * 5 ft. = 15 ft-lbs.).

The type constraints also allow you to reuse asingle function is several ways. This can alow you to easily create
aspecific “structure” for your trees asis shown in Example 20.

Example 20 You have a defined structure (full & complete binary tree of height 4, with an and/oxr for each
internal node) you' re trying to create from alimited set of functions. Without type constraints you would have to
create different and & or functionsfor each level. With type constraints, however, you can specify different types
(e.g. LO, L1, L2, L3, L4). So that, all terminals return type L4, and the Root takes type LO. The and & or
functions then have instances such as:

Argl Arg2 Return

L1 L1 LO

L2 L2 L1

L3 L3 L2

L4 L4 L3

15

Thiswill cause the generation of only those trees which match the above specified structure.
54 Mutation Sets

Mutation Sets are the constructs that CGP uses to keep track of the structure of valid trees. A mutations set consists of
the functions and terminals that are allowed to represent an argument of a function.

Theinitial mutation set, called the Untyped Mutation Set, is constructed from the Normal Form Fspecs. Any func-
tion/terminal listed in an Fspec is removed from the corresponding portion of the Untyped Mutation Set.

The Untyped Mutation Set is combined with the Type Constraint (see Section 5.3) information to yield the fina
Typed Mutation Sets, which are then used for the construction of the trees. Any function/terminals which has a type
that is not compatible with the argument in which it isreferenced, is removed from the Mutation Set for that argument.

Upon examining the Typed Mutation Set, the true power of it may not be apparent. In Section 5.7.1 towards the
end of the listing, the example shows the Typed Mutation Set. Even though the function add appearsin every set for
every argument of every function, it is not the same instance of the add function. The particular instance of the func-
tion is partially determined by which Type it is under. That is to say the add function under a Type ‘angle’ section is
strictly the add function which takes two angles as arguments and returns an angle.

5,5 Initialization and Operator M odifications

Madifications to lil-gp have been kept to a minimum. However some changes seemed prudent to help enable it to
respond more closely to the usersintent.

55.1 Initialization Parameters
Pleaserefer to the” lil-gp 1.0 User’s Manual” [11] for acomplete description of the standard initialization parameters.

A couple of additional Initialization Parameter have been added. One to help control tree generation and two to
provide information regarding the input files. And, like all parameters, they may be specified in aparameter file or on
the command line. Please see the lil-gp Users Manual [11] for further information on using parameters and parameter
files.
5.5.1.1 Tree Creation Parameter

* init.depth abs ={truefalse}, default = false.

This parameter is used to prevent the generation of initial trees shallower than that specified by the depth ramp.

In the default mode, this new parameter has no effect over lil-gp. When init.depth abs is set to true,

init.depth=m-n will cause rejection of initial trees shallower than m. lil-gp’s default behavior allows trees to
be shallower than m. (Technical Note: thiscan occur duringacall to generate random grow tree()).

5.5.1.2 Interface Parameters

* cgp_interface - Thefile containing the constraint creation instructions.
* cgp_input - The file which is to be created from the constraint instructions, if the parameter
cgp_interface isspecified. Thisfile will then act as the input to CGP lil-gp.

Detailed information about these parameters can be found in Section 5.8.2.

55.2 Mutation Operator

An additional Mutation Parameter has been added to prevent the Mutation Operator from allowing the mutated subtree
from being shallower than that specified by the depth parameter.

5.5.2.1 Mutation Parameters

* depth_abs ={truefalse}, default=false.

In the default mode, this new parameter has no effect over lil-gp. Whendepth absissetto true, depth=m-
n will cause rejection of mutated subtrees shallower thanm (it isagood ideato have keep trying Setto true as
well). lil-gp’s default behavior alows the Mutation operator to mutate a subtree shallower than m. (Technical Note:
this can occur during acall to generate random grow tree()).

16

553 Crossover Operator

Additional parameters have been added to the Crossover parameters.

The standard internal and external parameters are replaced with 2 pair of parameters which separate the func-
tionality between the source and destination parents.

55.3.1 Crossover Parameters

e internal (interna nodesin source parent), default = 0.9
e internal dst (internal nodesin destination parent), default = internal
* external (external nodesin source parent), default = 0.1
* external dst (externa nodesin destination parent), default = external
These act the same way asin lil-gp except that there can be different frequencies for internal/external node selec-
tion in the source and destination parents.

554 Collapse Operator (New)

The Collapse operator is similar to the Mutation operator in that it causes a single parent to mutate into a single off-
spring. Collapse chooses a random subtree, from a given parent tree, to be the destination. Another subtreeis chosen,
from within the destination subtree, as the source (see Figure 9). All of the nodes in the destination subtree that are not
also in the source subtree are removed. This results in the destination subtree being removed, and the source subtree
moved into its place. See also Example 21.

Figure 9 lllustration of Collapse operation
Parent Offspring

Destination

Source

Source

Example21 Hereisasampleindividual (tree) from an actual experiment. Thiscan beread asLISP function calls,
where (atan2 y x) correspondsto atan2 (y, x) inthe C language.

Parent: (fkin (sub (atan2 y x)
(acos (div (div x 2) x)))
(acos (add 2
(sub 1

(div (hypot x y) L1)))))
(The function sub performs subtraction, and the function div performs division. The function £kin simply
causesits 2 subtrees to execute in order.) So, if sub on the first lineis chosen as the beginning of the Destination
subtree of collapse, and if (div x 2) ischosen asthe Source subtree, then the resulting offspring would be:
Offspring: (fkin (div x 2)
(acos (add 2
(sub 1
(div (hypot x y) L1)))))

5.5.4.1 Collapse Parameters

e select - sameasfor Mutate
* keep_ trying -sameasfor Mutate

17

e internal - same asfor Mutate
* external - same asfor Mutate
* tree -sameasfor Mutate

e treen - sameasfor Mutate

56 CGP lil-gp Interactive Interface

Theinterfaceto CGPlil-gp isaninteractive system. Constraints are entered using function names. Listing order isirrel-
evant. Repetitions are disregarded. Functions are sorted by arty and then a phabetically by name.

5.7 Interactive Interface Description

An interactive interface is part of the modifications which CGP lil-gp 2.1;1.02 has added to lil-gp. The interface can
be broken up into the following sections:
1. Type Information (optional)
a. User defined data entry section
b. Display of Type Vectors
2. Tspecs & Fspecs (optional)
a. User defined data entry section
b. Display of Tspec & Fspec Constraints
c. Display of Normal Constraints (Tspec's & Fspec’s converted to Fspec-only)
d. Display of Untyped Mutation Sets
3. Weights (optional)
a. User defined data entry section
4. Display of Typed Mutation Sets

571 I nteractive Interface Example

Note: This example is of a problem with the functions (add, asin, sin), and terminals(1, PI, x, y). All user’'s
responsesarein italics.

Note: Type Information Section (see Section 5.3 for moreinformation).

<. ..00>
Reading Type information...

Note: You are asked for the Type constraints (see Section 5.3) of the functions and their arguments.

Default is a single 'generic' type. Accept? [0 to change]:
O<ENTER>

List type names: float integer angle

Specs for 'add' [2 arg and one ret types /<ENTER> for no more]
:float float float<ENTER>

Specs for 'add' [2 arg and one ret types /<ENTER> for no more]
:integer float float<ENTER>

Specs for 'add' [2 arg and one ret types /<ENTER> for no more]
:float integer float<ENTER>

Specs for 'add' [2 arg and one ret types /<ENTER> for no more]
:integer integer integer<ENTER>

Specs for 'add' [2 arg and one ret types /<ENTER> for no more]
:angle angle angle<ENTER>

Specs for 'add' [2 arg and one ret types /<ENTER> for no more]
: <ENTER>

Specs for 'asin' [1 arg and one ret types /<ENTER> for no more]
:float angle<ENTER>

18

Specs for 'asin' [1 arg and one ret types /<ENTER> for no more]
:integer angle<ENTER>

Specs for 'asin' [1 arg and one ret types /<ENTER> for no more]
: <ENTER>

Specs for 'sin' [l arg and one ret types /<ENTER> for no more]
:angle float<ENTER>

Specs for 'sin' [1 arg and one ret types /<ENTER> for no more]
: <ENTER>

Give ret type for terminal 'l': integer<ENTER>
Give ret type for terminal 'PI': angle<ENTER>
Give ret type for terminal 'x': float<ENTER>
Give ret type for terminal 'y':float<ENTER>
Give return type for the problem: angle<ENTER>

Note: All valid type vectors are now displayed

The following types are used...

Function 'add': numArg=2, numTypeVecs=5
vecO: 0:'float' 1:'float' -> 'float'
vecl: 0:'integer' 1:'float' -> 'float'
vec2: 0:'float' 1:'integer' -> 'float'
vec3: 0:'integer' 1:'integer' -> 'integer'
vec4d: 0:'angle' 1:'angle' -> 'angle'

Type 'float' returned from vectors: 0 1 2
Type 'integer' returned from vectors: 3
Type 'angle' returned from vectors: 4

Function 'asin': numArg=1l, numTypeVecs=2
vecO0: 0:'float' -> 'angle'
vecl: 0:'integer' -> 'angle'

Type 'angle' returned from vectors: 0 1

Function 'sin': numArg=1l, numTypeVecs=1

vecO: 0:'angle' -> 'float'
Type 'float' returned from vectors: 0
Terminal 'l': -> 'integer'
Terminal 'PI': -> 'angle'
Terminal 'x': -> 'float'
Terminal 'y': -> 'float’
Root: -> 'angle'

Note: Tspec & Fspec section for more information).

Reading F/Tspec information...

Default is empty Fspecs, full Tspecs. Accept? [0 to change]:
O<ENTER>

3 ordinary function (Note: thisisdisplayed for each function)
add asin sin

4 terminals (ordinary and ephemeral) :
1 PI xvy

Separate entries by [, ;]

Hit <ENTER> for empty set

Use function names in any order

Function 'add':

F add (exclusions) [up to 3 names] = <ENTER>
F add 0 (exclusions) [up to 7 names] = <ENTER>

19

T add 0 (inclusions) [up to 7 names] = add asin sin 1 PI x y<ENTER>
F add 1 (exclusions) [up to 7 names] = <ENTER>
T add 1 (inclusions) [up to 7 names] = add asin sin 1 PI x y<ENTER>

Note: thisisasking you for the Tspecs and Fspecs of the functions and their arguments.

* F_add = Fspecfor theadd function (List all functions which cannot directly call add)

* F_add _0=Fspecfor Argument O of theadd function (List all functionswhich cannot bear gu-
ment O of the add function)

* T_add_0= Tspec for Argument O of the add function (List all functions which can be argu-
ment O of the add function)

* F_add_1=Fspecfor Argument lof theadd function (List all functionswhich cannot beargu-
ment 1of the add function)

e« T add_1 = Tspec for Argument lof the add function (List all functions which can be argu-
ment 1of the add function)

<...>
Function 'asin':
F _asin (exclusions) [up to 3 names] = <ENTER>
F asin 0 (exclusions) [up to 7 names] = <ENTER>

T asin 0 (inclusions) [up to 7 names] = add asin sin 1 PI x y<ENTER>

<...>
Function 'sin':

F sin (exclusions) [up to 3 names] = <ENTER>

F sin 0 (exclusions) [up to 7 names] = add <ENTER>

T sin 0 (inclusions) [up to 7 names] = add asin sin 1 PI x y<ENTER>
<...>
Root:

F"Root (exclusions) [up to 7 names] = asin<ENTER>

T"Root (inclusions) [up to 7 names] = add asin sin 1 PI x y<ENTER>

Note: The Tspecs and Fspecsfor the Root are dightly different.
* F"Root = Fspec for the Root (List all functionswhich cannot be the root function)
* T"Root = Tspec for the Root (List all functionswhich can be theroot function)

Note: based on conditional compilation, constraints may be echoed. This section displaysthe constraintsasyou
entered them, and then as converted into the Normal Constraints. The | | separates functionsfrom terminals.

Read the following constraints...

CONSTRAINTS

Function 'add' [#0]:

F_add [#Fs=0:#Ts=0] =

F_add_0 [#Fs=0:#Ts=0]

F add 1 [#Fs=0:#Ts=0]

T add 0 [#Fs=3:#Ts=4] =

T add 1 [#Fs=3:#Ts=4]
Function 'asin' [#1]:

F asin [#Fs=0:#Ts=0] = ||

F asin 0 [#Fs=0:#Ts=0] = ||

T asin 0 [#Fs=3:#Ts=4] = 'add' 'asin' 'sin' || '1' 'PI' 'x' 'y’
Function 'sin' [#2]:

F sin [#Fs=0:#Ts=0] = ||

F sin 0 [#Fs=1:#Ts=0] = 'add' ||

T sin 0 [#Fs=3:#Ts=4] 'add' 'asin' 'sin' || '1' 'PI' 'x' 'y'

||
| |
'add' 'asin' 'sin' || 1Y 'pPIY O 'x! 'y'
radd' 'asin' 'sin' || 11 I pTr oyt Iyl

20

Root:

F Root [#Fs=1:#Ts=0] = ‘'asin' ||

T Root [#Fs=3:#Ts=4] = 'add' 'asin' 'sin' || '1' 'PI' 'x' 'y'
The normal constraints are...

CONSTRAINTS

Function 'add' [#0]:

F add 0 [#Fs=0:#Ts=0] = ||

F add 1 [#Fs=0:#Ts=0] = ||
Function 'asin' [#1]:

F asin 0 [#Fs=0:#Ts=0] = ||
Function 'sin' [#2]:

F sin 0 [#Fs=1:#Ts=0] = 'add' ||
Root:

F Root [#Fs=1:#Ts=0] = ‘'asin' ||

Note: Thissection displaysthe mutation setsasif the generic type were used. F[] = functions, T[] = terminals.

The following untyped mutation sets are used...

Function 'add': arity 2
Argument O
Type unconstrained mutation set
F [3 members] = 'add' 'asin' 'sin'
T [4 members] "1 'PI' 'x' 'y!
Argument 1
Type unconstrained mutation set
F [3 members] = 'add' 'asin' 'sin'
T [4 members] '1' 'PI' 'x' 'y!
Function 'asin': arity
Argument 0
Type unconstrained mutation set
F [3 members] 'add' 'asin' 'sin'
T [4 members] '1' 'PI'" 'x' 'y!
Function 'sin': arity 1
Argument 0
Type unconstrained mutation set

[

F [2 members] = 'asin' 'sin'
T [4 members] = '1' 'PI' 'x' 'y
Root:
Type unconstrained mutation set
F [2 members] = 'add' 'sin'
T [4 members] = '1l' 'PI' 'x' 'y'

Note: Weights Section (see Section 5.2 for more information).
Note: Entering O herewill prompt you to enter all weights, similar to entering constraints above.

Setting initial weights for mutation set members...

Initial weights are all equal. Do you accept [0 to change]:
O0<ENTER>

Function 'add': 2 mutation set pairs

Argument O0:

F [3 members] = 'add' 'asin' 'sin'
T [4 members] = '1' 'PI' 'x' 'y

Reading the weights for type I functions...

21

Function 'add': give weight (0,1]: 0.25<ENTER>
Function 'asin': give weight (0,1]: 0.25<ENTER>
Function 'sin': give weight (0,1]: 0.5<ENTER>
Reading the weights for type II/III terminals...
Terminal 'l': give weight (0,1]: 0.2<ENTER>
Terminal 'PI': give weight (0,1]: 0.2<ENTER>
Terminal 'x': give weight (0,1]: 0.3<ENTER>
Terminal 'y': give weight (0,1]: 0.4<ENTER>
Argument 1:
F [3 members] 'add' 'asin' 'sin'
T [4 members] = '1' 'PI' 'x' 'y

Reading the weights for type I functiomns...
Function 'add': give weight (0,1]: 0.25<ENTER>
Function 'asin': give weight (0,1]: 0.25<ENTER>
Function 'sin': give weight (0,1]: 0.5<ENTER>
Reading the weights for type II/III terminals...
Terminal 'l': give weight (0,1]: 0.2<ENTER>
Terminal 'PI': give weight (0,1]: 0.2<ENTER>
Terminal 'x': give weight (0,1]: 0.3<ENTER>
Terminal 'y': give weight (0,1]: 0.4<ENTER>

Function 'asin': 1 mutation set pairs
Argument O:
F [3 members] 'add' 'asin' 'sin'
T [4 members] = '1' 'PI' 'x' 'y!'

Reading the weights for type I functions...
Function 'add': give weight (0,1]: 0.25<ENTER>
Function 'asin': give weight (0,1]: 0.25<ENTER>
Function 'sin': give weight (0,1]: 0.5<ENTER>
Reading the weights for type II/III terminals...
Terminal 'l': give weight (0,1]: 0.2<ENTER>
Terminal 'PI': give weight (0,1]: 0.2<ENTER>
Terminal 'x': give weight (0,1]: 0.3<ENTER>
Terminal 'y': give weight (0,1]: 0.4<ENTER>

Function 'sin': 1 mutation set pairs
Argument O:

F [2 members] = 'asin' 'sin'

T [4 members] = '1' 'PI' 'x' 'y

Reading the weights for type I functiomns...
Function 'asin': give weight (0,1]: 0.5<ENTER>
Function 'sin': give weight (0,1]: 0.4<ENTER>
Reading the weights for type II/III terminals...
Terminal 'l': give weight (0,1]: 0.6<ENTER>
Terminal 'PI': give weight (0,1]: 0.4<ENTER>
Terminal 'x': give weight (0,1]: 0.3<ENTER>
Terminal 'y': give weight (0,1]: 0.1<ENTER>

Root:
F [2 members] 'add' 'sin'
T [4 members] = '1' 'PI' 'x' 'y
Reading the weights for type I functions...

22

Function 'add': give weight (0,1]: 1<ENTER>
Function 'sin': give weight (0,1]: 1<ENTER>
Reading the weights for type II/III terminals...
Terminal '1l': give weight (0,1]: 1<ENTER>
Terminal 'PI': give weight (0,1]: 0.2<ENTER>
Terminal 'x': give weight (0,1]: 1<ENTER>
Terminal 'y': give weight (0,1]: 1<ENTER>

Note: End of Weights Section and start of the Display of Typed Mutation Sets Section

Note: This section displays the typed mutation sets. It shows the valid types of each argument, for every func-
tion, along with the functions and terminals of that type which can be used in that argument.

The following typed mutation sets are used...

Function 'add': arity 2
Argument O
Type 'float'
F [2 members] = 'add' 'sin'
T [2 members] = 'x' 'y!'
Type 'integer'
F [1 memberg] = 'add'
T [1 members] = '1'
Type 'angle'
F [2 members] = 'add' 'asin'
T [1 members] = 'PI'
Argument 1
Type 'float'
F [2 members] = 'add' 'sin'
T [2 members] = 'x' 'y'
Type 'integer'
F [1 members] = 'add'
T [1 members] = '1'
Type 'angle'
F [2 memberg] = 'add' 'asin'
T [1 members] = 'PI'
Function 'asin': arity 1
Argument 0
Type 'float'
F [2 members] = 'add' 'sin'
T [2 members] = 'x' 'y'
Type 'integer'
F [1 members] = 'add'
T [1 members] = '1'
Function 'sin': arity 1
Argument O
Type 'angle'
F [1 members] = 'asin'
T [1 members] = 'PI'
Root:
Type 'angle'
F [1 membersgs] = 'add'
T [1 members] 'PI!

Send 1 to continue, 1<ENTER>

I nterface File

anything else to quit cgp-1lil-gp:
5.8

The Interface File, described bel ow, uses a simple language to describe the constraints you wish to specify. It takesthis
information, and convertsit into an input file, which CGP then reads from instead of reading from the keyboard during

23

use of the Interactive Interface (Section 5.6).

581 Interface File Overview

There are 4 sections in the Interface File. The first three sections may appear in any order, and may even be
repeated. No section has any effect on the other sections. This file must contain at least the End of File Marker. The
sections are;

1. Fspec/Tspec Constraints (optional)

2. Weight Constraints (optional)

3. Type Constraints (optional)

4. End of File Marker (required)

582 Interface File Parameters
Two new parameters have been added to all flexibility in the use of this new interface. They are:
* cgp_interface - Thefile containing the constraint creation instructions.
* cgp_input - The file which is to be created from the constraint instructions, if the parameter
cgp_interface isspecified. Thisfile will then act as the input to CGP lil-gp.

And, like all parameters, they may be specified in a parameter file or on the command line. Please see the lil-gp
UsersManual [11] for further information on this. Depending on how you specify these parameters, several things may
happen:

1. Nothing specified - Use Interactive Interface

2. Specify cgp_input only - The specified fileis used for the Interactive Interface instead of the keyboard.

3. Specify cgp_interface only - A temporary fileis created for the input file, and deleted when finished.

4. Specify both - The interface fileis used to create the input file. Theinput file, may later be used asin option 2.

583 I nterface File Definitions

e funclist =list of applicable functions

e termlist =list of applicableterminals

e functermlist =list of applicable functions & terminas

* arglist = list of applicable argument numbers (0...arity) (i.e. the arglist for sin() is 1 item long.)

* weightlist = list of applicable weights (user defined in interface file),

length(weightlist) <length(functermlist)

e typelist =list of valid types (user defined in interfacefile)

e type=asinglevalidtypefrom typelist

 argtypelist = list of the valid type for each argument in a particular instance (length defined by
arity; i.e. the argtypelist for sin() is 1 item long.)

e null=empty list (not actualy typedin, just hit the <ENTER> key)

« * =wildcard, include all elementsfrom applicablelist. Any item appearing after awildcard isignored.

e #=begin of comment. Comments continue until end-of-line. Valid charactersare“*#" + space + a pha
numerics.

5.8.4 I nterface File Sections

There are 3 sections corresponding to Fspecs/Tspecs, Weights, and Types. These sections may appear in any order. If
a section appears, even if empty, it will override the default behavior of CGP, so care must be taken to ensure that
enough information is present to allow CGP to have enough constraint information.

24

585 Fspec/Tspec Constraints

The Section Header and Footer must be present if this section isto be used. If this section appears, even if no specsare
listed, then any items not appearing in a Tspec will be placed in the appropriate Fspec of the Normal Constraints. If an
item appearsin both an Fspec and the corresponding Tspec, then the Fspec will take precedents. Once a Spec is spec-
ified it cannot be overridden, with the exception of an Fspec overriding a Tspec.

5851 Syntax
FTSPEC (Note: Section Header)
F (funclist | *) = funclist | * | null
F (funclist | *)[arglist | *] = functermlist | * | null
T (funclist | *)[arglist | *] = functermlist | * | null

F ROOT = functermlist | * | null
T ROOT = functermlist | * | null
ENDSECTION (Note: Section Footer)

5.8.5.2 Default Behavior

If this section is omitted, then all FSpecs are |left empty and all TSpecs are full. If the section header is given, then all
Fspecs and Tspecs default to the empty set. If no TSpecs are entered, thiswill result in normal constraints being gen-
erated with full Fspecs, yielding no possible tree growth.

5.8.6 Weight Constraints

The Section Header and Footer must be present if this section isto be used. If this section appears, even if no specsare
listed, then any items not appearing in a Weight specification will be given aweight of 1.0. Any weight may be over-
ridden by specifing a new weight.

Note: if there arefewer elementsin weightlist than in functermlist, the last element in weightlist will be used for
theremaining elementsin functermlist.

5.8.6.1 Syntax
WEIGHT (Note: Section Header)
(funclist | *) larglist | *] (functermlist | *) = weightlist

ROOT (functermlist | *)= weightlist
ENDSECTION (Note: Section Footer)

5.8.6.2 Default Behavior
Whether this section is used or not, the default behavior isto set all the weightsto 1.0.

5.8.7 Type Constraints

The Section Header and Footer must be present if this section isto be used. If this section appears, TY PELIST must
bethefirst item following it. Also, there must be an entry for every function, terminal, and the Root. Once an instance
of afunction has been specified, it cannot be overridden. However, terminals and the Root may be specified multiple
times but the last entry for each will be the one used.

5.8.7.1 Syntax
TYPE (Note: Section Header)
TYPELIST = typelist (Note: Definevalid types)
(funclist) (argtypelist) = type
(termlist | *) = type
ROOT = type

25

ENDSECTION (Note: Section Footer)

5.8.7.2 Default Behavior

If this section is omitted, then only a generic typeis used. If the section header is given, then al types, functions, ter-
minals, and the Root are undefined.

5.8.8 End of File Marker

ENDFILE (Note: Section Footer)

5.89 Interface File Example

The Interactive Interface Example, Section 5.7.1, can be duplicated in the Interface File by thefollowing Interface File
example.

FTSPEC

F_(*)= #not required since it’s empty

F_(*) [*]= #not required since it’s empty

F (sin) [0] =add #prevent sin(_+)

F ROOT=asin #prevent asin() from being the root
#must specify some TSpecs

T_(*) [*]=x* #allow all TSpecs

T ROOT=* #allow all functions/terminals for Root
ENDSECTION

WEIGHT

#A11l unspecified weights default to 1.0

#If I desire to reduce the odds of everything but that which
I explicitly specify, I could do the following

#(*) *=0

#ROOT (*) =0

#

#Set the weights for the functions: add asin sin 1 PI x vy,
#as the arguments for the add & asin functions.

(add asin) [*] (*)=.25 .25 .5 .2 .2 .3 .4

#similarly for the sin function

(sin) [0] (*)=.5 .4 .3 .6 .4 .3 .1

ROOT (*) =1 #not really needed as default is 1.0
ROOT (PI)=.2

ENDSECTION

TYPE

TYPELIST = float integer angle #list of all wvalid types
(add) (float float)=float #add () instances

(add) (integer float)=float

(add) (float integer)=float

(add) (integer integer)=integer

(add) (angle angle)=angle

(asin) (float)=angle #asin () instances
(asin) (integer) =angle

(sin) (angle)=£float #sin () instance
(1) =integer #terminal types
(PI)=angle

(x y)=float

ROOT=angle #Root return type
ENDSECTION

ENDFILE

26

5.9 Input FileInterface Redirection

If you intend to run multiple experiments, or if the data entry section is overly long, you may wish to create an input
file which contains all user inputs and which can be redirected into the program at run-time. At the present time, gen-
eration of thisfileis a manual process, and must match exactly what you intend for the input. Work is underway to
provide an easier-to-use user interface.

59.1 Interface Redirection File Contents

The Interactive Interface shown in Section 5.7.1 could be duplicated in an input file asfollows. Thisfile can be created
from the example in Section 5.8.9 (Interface File Example). The format is very important, as this file is used instead
of the user having to type al of thisin. Also, sincethisfileis simply redirected into the program, no form of comments
aredlowed init. (Note: The <ENTER> is only shown for clarity, and the (Note: ...) are not part of thefile.

0<ENTER> (Note: start of Types)
float integer angle<ENTER> (Note: valid types)
float float float<ENTER> (Note: add() Types)

integer float float<ENTER>
float integer float<ENTER
integer integer integer<ENTER>
angle angle angle<ENTER>

<ENTER>

float angle<ENTER> (Note: asin() Types)

integer angle<ENTER>

<ENTER>

angle float<ENTER> (Note: sin() Types)

<ENTER>

integer<ENTER> (Note: terminal Types)
angle<ENTER>

float<ENTER>

float<ENTER>

angle<ENTER> (Note: Root return Type)
0<ENTER> (Note: start of F/TSpecs)

<ENTER> (Note: F/T_add Constraints)
<ENTER>

add asin sin 1 PI x y<ENTER>

<ENTER>

add asin sin 1 PI x y<ENTER>

<ENTER> (Note: F/T_asin Constraints)
<ENTER>

add asin sin 1 PI x y<ENTER>

<ENTER> (Note: F/T_sin Constraints)
add<ENTER>

add asin sin 1 PI x y<ENTER>

asin<ENTER> (Note: F/T_Root Constraints)
add asin sin 1 PI x y<ENTER>

0<ENTER> (Note: start of Weights)

0.25 0.25 0.5 0.2 0.2 0.3 0.4<ENTER> (Note: add[0]() Weights)
0.25 0.25 0.5 0.2 0.2 0.3 0.4<ENTER> (Note: add[1]() Weights)
0.25 0.25 0.5 0.2 0.2 0.3 0.4<ENTER> (Note: asin[0]() Weights)
0.5 0.4 0.6 0.4 0.3 0.1<ENTER> (Note: sin[0]() Weights)
111 0.2 1 1<ENTER> (Note: Root Weights)
1<ENTER> (Note: end of Weights Section. Finished, enter 1 to continue)

Note: anything after this point will not be read by the program

27

5.9.2 Interface Redirection Example

Once the input file has been created, it is asimple matter to use it. If the file were called experiment . input and
the executablefile is called gp then using that file would be a matter of:

gp parameters < experiment.input

Thisisthe standard way of redirecting afile into a program in Unix and DOS, but there may be other variations
on your system. Please refer to your system documentation for further information in this area.

6 ACGP Technical Elements
Figure 10 Working envorinment for ACGP.

Pruned non-uniform
distribution

CSL
Y L llllll’

~_ _—

Mutation/Crossover

P pi+l

Reproduction

The working envornment for ACGP isthe same as for CGP, except that the non-uniform probabilistic distribution
space is being adjusted during the run of the GP system.

The user may or may not provide any initial stroing constraints and/or heuristics. ACGP will adjust the heuristics
(or the uniform space if no heuristics are given apriori), favoring heuristics leading to better fitness and smaller trees
(subject to parameters).

Note that apriori strong constraints cannot be undone by ACGP. On the other hand, heuristics can be adapted, and
new strong constraints can be discovered.

Figure 11 Main loop for ACGP2.1.

Initialize P

v

» EvaluateP |«

Compute
distribution

Update
heuristics

Reproduction |¢ N @ Y 3/ RegrowP

ACGP1.1 adjusts the heuristics by observing the distribution of such local heuristics in the population. The heu-
ristics can be updated, or completely replaced by new ones. Following lilgp1.02, ACGP1.1 can run multiple popula-
tions (but not ADFs). However, only asingle set of heuristics is extracted from all the populations.

The main generation loop for ACGPL1.1 is presented in Figure 11. ACGPL1.1 operatesin iterations, where an iter-
ationisaunit learning interval. An iteration can be anywhere from one generation to many generations. When iteration
is not complete, the current loop is the same as one generation in the GP loop. When the current generation completes

28

and iteration, heuristics are extracted (from the current population(s)), updated (or raplaced), and then new generation
is produced either by the same operators as during a regular generation, or by regrowing a new population
(Regrow=Y).

Also, mutation can be redone like crossover, not explicit roul ette, but one built on the fly. Thisway can easily use
the new heuristics, and also redo CGP2.2 (levels) without expandsing to the varioous levels but rather by comuting for
each mutation set member what is the min and max level on which this can be used. The advantage is that fewer
weights on various levels must be precomputed after each update, but the must do more on the fly? TBD once we
decide what counters to use and how.

6.1 Distribution Counters

Figure 12 The context information in the tree structurein ACGP1.1.1 (left) and ACGP2.1 (right), asexpressed in
the tree and as explored..

return type
I a /
f] —_—

typeVec czj to |ty |t
t Ly
f f
typeVec czj typeVec czj

Figure 12illustrates the context information that is explored for the duistribution infrmation in ACGP1.1.1 and
ACGP2.1. Inv1.1.1, the information consisted of the node labels (functions and terminals), and the distribution was
collected by exploring one parent-child at atime. Inv2.1 theinformation ismuch richer, asexplained in Section 4.4.12.

ACGP2.1 will use afew distribution counters to collect various heuristics: on functions/terminals, on types, and
in combination.

Figure 13 Order of the heuristics.
zero-order first-order second-order

<N

-

>

6.1.1 First-order Heuristicson Types: Counter CntT1

The counter cntT1 collectsfirst-order heuristics on typesonly. For every type available, it considersal function arities
separately. For terminals (zero arity), it simply collects the number of times this type has been used. For a given non-
zero arity, it considers all functions of this arity producing this type, counting the types used only. If there are any, it
counts the type used on each argument, separately. Thisisillustrated in Figure 14.

29

Figure 14 Partially allocated and instantiated CntT1 czj structure.

CntT1 czj largest fun arity producing tj+1
0 K Note: if atypeis never produced
/@ by functions of given arity, vec=len=0
On arity 0, vec=1en=0 and tot=counter

Cnt2

vec
NurTypes|t q len k
S tot —_—

Note: vec=1en=0 |

if type never vec
produced len
tot NumTypes
Cntl t —

The actual counters

This counter is not very useful for typeless applications but it will be used for statistics.

6.1.2 Second-order Heuristicson Types: Counter CntT?2

The counter cntT2 collects second-order heuristics on types only. For every type available, it considers all function
arities separately. For terminals (arity zero), it simply collects the number of times this type has been used. For agiven
non-zero arity, it considers al cominations of types producin the given type (cobinations over all arguments). If there
are any, it counts the type used on each argument, separately.

Figure 15 Partially allocated and instantiated CntT2 czj structure.

CntT2 czj largest fun arity producing tj+1
0 K Note: if atypeisnever produced
/O by functions of given arity, vec=1en=0
On arity 0, vec=1en=0 and tot=counter
vec
: len k
Nurtypes| | Ci tot Nulypes
Cnt4 t

vec The actual counters

len

tot

Cn t

This counters collects the following: (Va = ari ty)(thpe — type) . Thisisillustrated in Figure 15. This counter is
a

not used for typeless applications. Even though this coungter expresses second-order heuristics, the information

needed is contained in a single node (using the typevec).

The index in the actua counter array is computed as follow: take the children types (left child the most signifi-
cant), read the number as anumber in base NumTypes, and take the decimal equivalence. For example, for NurTypes=2
and functions of arity 3, the counter is of size 2°=8. The context where the hildren are labeled (felt to right) as giving
type 011, will be counted at index 3;q. Theindex is computed by the function int acgp indexCntT2 (arity, type-
Vec). The actual computation is helped with an array of base NumTypes multipliers allocated and initialized in
CntT2bases czj, asillustrated in Figure 16 for the same example (0112 is O* 1+1*2+1*4

Figure 16 Auxilary CntT2bases czj for NumTypes=2 and maximal function arity 3 in an application.
0 1 2

20=1| 21=2|22=4

CntT2bases czj

CntBases_t

30

6.1.3 First-order Heuristicson Labels Only: Counter CntL1

The counter cntLl collects simple first-order typeless heuristics as the following distribution information:
function x arg — function (equivalent to the countersin ACGP1.1.1). That is, for every function and every of its
argument it counts what labels the child. Thisisillustrated in Figure 17.

Figure 17 Partially allocated and instantiated CntLl czj structure.

CntLl czj a
0 I

vec
fi q len
Nurof* tot NUMET

CntZ_t y

The actual counters

¢nt3 t

Root Note: second level array of only length 1 allocated for the Root

6.1.4 Second-order Heuristics on Labels Only: Counter CntL2
The counter cntL2 collects simple first-order typeless heuristics as the following distribution information:

(H function) — function. That is, for every function and every of its argument it counts what labels the child.

a=arity

Thisisillustrated in Figure 18.
Figure 18 Partially allocated and instantiated CntL2_czj structure.

CntL2 czj
NurFTa
vec
f Ci len The actual counters
NumF' tot
3 t
Root Note: for the Root len=NumFT only

Note that this array can get long. For the 11-multiplexer problem, not will have the array of length 15, and and
or will haveit of length 225, while if will haveit of length 3375 (15°).

Indexing is done similarly to that for the counter CntT2 czj, through the function int acgp intexCntL2 (int
arity, int *children). The children array is allocated and initialized in the acgp count czj () function. The
bases are precomputed in CntL2bases czj for the largest arity and used as needed. For example, for the 1£ function
having thethree children a, (FT index 4), 1£ (0), d, (9), respectively, the counter index will be 4* 15%+0* 15+9* 1=909.

6.1.5 Zero-order Combined Heuristics; Counter CntTLO

The counter cntTLO collects simple heuristics information: type — label . That is, for every type produced, what
functions produceit. Thisisillustrated in Figure 19.

31

Figure 19 Partially allocated and instantiated CntTLO czj structure.

CntTLO_cZj NumpT

vec The actual counters
N t; <::i: len
umTypes tot

t3 t

This counter is not very useful for typeless applications but will be used for statistics.

6.1.6 Zero-order Combined Heuristics: Counter CntLTO

The counter cntLT0 collects ssimple heuristics information: function — type. That is, if afunction needs to be used,

what types whould it produce (note that terminals are fixed type and thus no heuristics needed). Thisisillustrated in
Figure 20.

Figure 20 Pertially allocated and instantiated CntLT0 czj structure.

CntLTO czj NumTypes
vec The actual counters
NurF | i CZ Len
tot
Cnt3_ t

This counter is not used for typeless applications.

6.1.7 First-order Combined Heuristics: Counter CntLT1
Figure 21 Partially allocated and instantiated CntLT1 czj structure.

CntLT1 czj Mﬁ_

vec
f; <::§:: len TP czj [i] . f.numTypeVecs
NumE| tot —

Cnt4_t
vec The actual counters, some unused
len
tot

Cnt3_t

The counter cntTL1 collects combined heuristicsinformation, while handling one node at atime (not looking at parent-
child). Thefollowing distribution informationiscollected: function x type — typeVvec . Thatis, for every function
that has to generate a specific type, thisisthe counter of what function instance (typevec) is used. Thisis alimited-
context heuristic, but in linksinformation among three levels: the given node, the parent who determineswhat type the
node hasto generate, and the children, based on the instances of the function. Thereforeit isvery simple yet very rich

32

information. This information can apparently be used to put heuristics on the different function instances.
This heuristics can be read as either:
« if afunction of agiven type needs to generated, what instance to use
 if atypefrom agiven function needs to be generated, what instance to use
This counter is not used for typeless applications. It is really a zero-order heuristics yet quite rich in contents.

6.1.8 First-order Combined Heuristics: Counter CntLT2

The counter CntLT?2 collects more detailed first-order heuristics as the following distribution information:
functionx typevec x arg — functionx typevec . That is, for every function that is using a specific instance,
and for every child argument, it collects the information about what function/terminal labels the child if the child isa
function, what instance of the function it is. This information is much richer. Note that for the child we collect the
instance not the type information because the type information of this child is already implied by the instance of the
parent and thusis not subject to modification. The total field isthe only one used for terminals (typeVecs=NULL) and
it may be used for functions in updfating the heuristics if there is no desire to differentiate between different child’'s
instances.Thisisillustrated in Figure 22.

This counter is not used for typeless applications.
Figure 22 Partially allocated and instantiated CntLT2 czj structure.

CntLT2 czj TP czj [1] . f.nunTypeVecs
k

Q

NumF]| len 5 [a

cnté _t tot S

Cnt5 t
vec
len
tot
Cnt4 t
TP _czj [m] . £.numTypeVecs
NumF
Ly Q The actual counters
NumFT] Cnt3_t
NumT Note: for the terminals here, vec is unallocated
lenisOand only the tot isused

6.2 Usingthe Countersto Update Heuristics

The counters can be used directly, by modifying initialization/mutation/crossover, or by modifying the underlying
CGP2.1 mechanisms. TBD. At present, we only analyze the counters afterwards. Counters can be used directly to
affect mutation/crossover, or they can be used to modify the existing CGP2.1 weights (probably after changing the
function overloading from boolean to probabilistic instances with aroul ette whee!).

6.3 New Output Files

On every ACGP run (acgp.acgp>0), the cutput . basename.acgp file is generated, with al the independent and
dependent acgp-paramaters, and the initial weights. The counters are computed and printed according to the
acgp.file_interval and acgp.pop_sampling parameters. Each of the eight countersis printed in a different file. More-
over, each counter may be printed into between one and four different files. The general form of a counter filenameis

33

output . basename. ?? . XXX where
» xxx isthe name of the counter w/o the _czj
o 22isof theform [g|i][blw], with
e g- generation data
e i-iterationdata
* b- sampling of best trees
» w- statistics from the whole population

No weight modifications are printed at present as the weights are not adjusted yet. When they are, some weight
fileswill have to be added.

The counter files are as follow:
1. If acgp.acgp==0 then none
2. If acgp.acgp>0 then for every counter the following files (the 2?2 above) are produced:

acgp.pop_sampling

Counter files generated

acgp.file interval 0 ib ibtiw

1 ib+gb ibtiw+gb+gw

located in the following indexes in the file array for each counter:

File kind File array index
ib 0
iw 1
gb 2
aw 3

6.4 Implementation Changes

There are new functions and data structuresin cgp_czj . ¢, to count the distribution and print them into afile. All func-
tions and data structures have the acop prefix.

gp.cismodified in three ways. Communication into this file is accomplished through two new global variables
Acgp_ regrow and Acgp_stop on term
1. Thegeneration loop is modified to take Acgp.stop on term paramater into account.

2. Thelil-gp function generation information(), caled in the generation loop at the end of each loop, calls
acgp_czj () onevery generation, whichinturn setsthe current value of Acgp_regrow, and computesand prints
al counters as needed.

3. Attheend of the generation loop, reproduction isredirected to regrowing as needed according to Acgp regrow
(see Figure 11).

Figure 23 Changes in the basic ACGP |oop to accommodate expressed info.
reset expressed czj member (each node)

-acgp reset expressed czj ()
Initialize P _ “set expressed czj field during evaluation
¢ -~ -modify evaluate tree recurse()

» EvaluateP |«

Compute use expressed czj
distribution [T Tinacgp_count czj ()

Update
heuristics

Reproduction |¢ N Q Y 3/ RegrowP

L

The data structure for the node is changed to include the floating field expressed cz3j, which counts the number
of timesagiven nodeisvisited during evaluation. Note that ifd the evaluation is done only once, then the field isgoing
to be O or 1. If the evaluation is done more than once (as to evaluate for different data), this will be the actual count.
How thisinformation is utilized in counting the distribution depends on the new parameter acgp.use_expreessed.

The changes needed in the basic ACGP loop are shown in Figure 23.

7 ACGP 2.1 User’'sManual

The following are ACGP2.1 specific parameters (some are from ACGP1.1.1). They can be specified the same way as
any ligp1.02 (or CGP2.1) parameters. The following gives the parameter’s name, range, default value, and interpreta-
tion.
* acgp.use trees prct

(0..1]

0.1

The effective rate for distribution sampling, that isthis prct of al trees (from all populationsif run-

ning multiple populations) will be taken for sampling. Note that the actual number is taken by

applying the ceil() function and thus the actual nhumber of trees may happen to be somehow larger

than predicted.

* acgp.select all
[0.1]
1

1 - Extract acgp.use trees prct best (after sort) out of each population then take them al for
sampling
0 - Extract sgrt(acgp.use trees prct) best of each pop then resort and teke again
sqrt (acgp.use_trees prct) resulting in acgp.use trees prct effective rate
* acgp.extract quality prct
[0.7]
0.99
Two trees with fitness diff by no more than (1-acgp.extract quality prct) isconsidered same
fitness and thus compared on size
* acgp.gen start prct
[0.1]
0.0
Start extracting at generation acgp.gen start prct*MaxGen
* acgp.gen step

35

[1..MaxGen]
1
After starting extracting, extract at this gen interval (thisisthe iteration length)
* acgp.gen slope
[0,2,2]
1
0 - Use extracted heuristics to update the old heuristics at the constant rate of

acgp.gen_slope prct, butif thisis 0 then use constant rate of ./1/numlterations
1 - Use extracted heuristics to update the old heuristics with rate increasing with iteration number
The heuristicsformulais newWeight = oldWeight(1-r) + counterRatio - r

where counter Ratio isthe frequency of aheuristic to all heuristics of agiven parent, and r isthe
rate of change.
* acgp.gen slope prct
[0..1]
0.10
See above.

* acgp.0_ threshold prct
[0.7]
0.025
If aweight dropsto weight such that weight /mutSetSize lessthan acgp.threshold prct, then
drop weight to O.
* acgp.acgp
[0,1,2]
0
0 - CGP run, no statistrics no ACGP outputs
1- ACGP run, no regrow
2 - ACGP run, with regrow
e acgp.file interval
[0.1]
0
0- produce the statistics and counter files at every iteration only
1- produce the statistics and counter files at every generation and iteration
® acgp.pop sampling
[0.1]
0
0 - count from the selected best trees according to acop.use trees prct and acgp.select all
1 - count aso from the whole population
* acgp.stop on term
[0,1]
1
0 - Continue remaining generations even on solving (term)
1 - Stop generations upon solving

* acgp.use expressed
[0,1,2]
0
0 - collect distribution from all nodes
1 - skip over subtrees which are not expressed (not used in evaluation) and use the other subtrees
with the same weight
2 - use distribution proportional to the number of visitisin a node (equivalent to option 1 if a node
isvisitied O or 1 timesonly)

If you desire to use regrowing (acgp . acgp must be 2), you must include regrow operator as one of thelilgp oper-

36

ators, as the last one listed (the operator is defined with ACGP 1.1). If you dont want to use regrow during regular
reproduction, set its probability to a very low value.

8

(1]
(2]
(3]
[4]
(5]

6]
[7]

(8]
(9]

Bibliography

Lawrence Davis (ed.). Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.

David E. Goldberg. Genetic Algorithmsin Search, Optimization, and Machine Learning. Addison Wesley, 1989.
John Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.

Cezary Z. Janikow. “ Constrained Genetic Programming” . Submitted to Evolutionary Computation.

Cezary Z. Janikow. “ A Methodology for Processing Problem Constraints in Genetic Programming” . Computers
and Mathematics with Applications, Vol. 32, No. 8, pp. 97-113, 1996.

Cezary Z. Janikow. “ Adapting Representation in Genetic Programming” . Proceedings of GECCO 2004, 6/2004,
TBP

Cezary Z. Janikow. “ ACGP: Adaptable Constrained Genetic Programming” . Proceedings of GPTP04, 5/2204,
TBP

Kenneth E. Kinnear, Jr. (ed.). Advancesin Genetic Programming. The MIT Press, 1994.

John R. Koza. Genetic Programming. The MIT Press, 1992.

[10] John R. Koza. Genetic Programming I1. The MIT Press, 1994.
[11] Douglas Zongker & Bill Punch. “ lil-gp 1.0 User’'s Manual” . zongker@isl .cps.msu.edu.

37

