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This document describes extensions to lil-gp facilitating dealing with constrains and heuristics, CGP - as
outline in [5], and to adapt those, ACGP - as outlined in [6][7]. ACGP lilgp 2.1;1.02 in built on the top of
CGP lil-gp 2.1;1.02. This document combines both the tech manuals for CGP2.1 as well as for ACGP2.1. 

Both CGP2.1 and ACGP2.1 are based on lil-gp 1.02, and thus resulting extensions are referred to as CGP/
ACGP lil-gp 2.1;1.02 (the first version# is for the extension, the second for the utilized lil-gp version).
Unless explicitly needed to avoid confusion, version numbers are omitted.

CGP is a methodology to process both strong constraints and weak constraints (heuristics) in GP utilizing
tree representation. Both kinds of constraints are only first-order, that is constraints on parent-child
relationship (plus constraints on the root node). CGP2.1 is the resulting implementation. In CGP, trees
invalidating the strong constraints are never produced, while the heuristics are used as preference criteria for
initialization, crossover and mutation. 

ACGP is a methodology to adapt the employed heuristics to improve problem-solving. At present, the
improvement is based on both fitness and chromosome size, as determined by observing population
statistics.

ACGP v2.1 differs from ACGP v1.1 by collecting different distribution information since the information
expressed in v2.1 trees is richer than that in v1.1.1. The extended distribution information is also used to
generate differnt updates of the basic heuristics.

1 Overview
lil-gp 1.02 is a public domain tool [11] for developing Genetic Programming (GP) [8][9][10] applications. Its imple-
mentation is based on the closure property [9], which states that every function can call any other function and that any
terminal can provide values for any function argument. Unfortunately, this property leads to many invalid programs
being evolved (invalid with respect to program syntax and semantics, and not program size limitation). In GP, this is
dealt with by either penalizing such trees (e.g., by setting evaluation to 0), or by providing extended interpretations
(e.g., protected division [9], but these choices are arbitrary in general). The objectives of Constrained Genetic Pro-
gramming (CGP) is to provide mean to specify syntax and semantic constraints, and to provide mechanisms to enforce
them [4]. CGP lil-gp 1.02;1.022 is the result of implementing CGP into lil-gp 1.02. CGP lilgp 1.1/1.02 (not distributed
as of now) extends the former. CGP lil-gp2.1/1.02 extends the latter by dealing with different types. Please refer to lil-
gp for licensing information.

CGP lilgp 2.1/1.02 implements constraints processing plus it adds a few parameters over lil-gp 1.02. It is capable
of processing function constraints as outlined in [4][5]. It also has the abilities to process problem heuristics: in CGP
lil-gp 1.02 the constraints would determine what programs were considered valid, ond only those would evolve. How-
ever, except for the pressure of the evaluation, there was no other ways to differentiate between different pro-
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grams.Starting with v1.1, CGP lil-gp allows the user to specify different weights to various elements of a tree, based
on their context. For example, suppose there are three functions f1, f2 , f3. CGP lil-gp 1.02 allows the user to restrict
arguments of f1 to call upon f2 and f3 only. CGP lil-gp 2.1 allows the user to additionally specify that out of those two
allowed functions, f2 is twice as good a candidate. Work on automatically evolving those weights is in progress (at the
moment they remain constant throught the run).

Finally, CGP lilgp 2.1/1.02 can also process constraints based on data typing. For example, suppose that function
f1, requires two argumemnts. Suppose that it can deal with two integers, in which case the resulting type is an integer.
It can also deal with two floats, in which case the returned type is float. Upon mutation or crossover, the second child
of this node can only be a function returning integers if the first argument currently resturns integers. However, if the
first argument currentlyu returns floats, then the second child can be any function returning either integer or real (given
that integers are compatible with reals [4]).

Despite some redundancies among such type constraints and constraints processed in v1.02/1.1, no constraints
have been removed. This way the user has the option to use either constraint specification means.

2 CGP Application Environment

Figure 1 The CGP lil-gp environment.

The environment for CGP lil-gp, and its CGP and lil-gp elements are presented in Figure 1. As indicated, the user inter-
acts with CGP lil-gp (all interfaces of lil-gp are preserved intact and are not shown) by specifying problem constraints
in the constraint language (see Section 4.1 for explanations and examples). CSL constraints are transformed into the
normal form [5] and stored in so called mutation sets. Finally, lil-gp interacts with the mutation sets. The result of this
interaction is a restriction on lil-gp’s space of evolved programs into only those satisfying the constraints. 

Figure 2 Another look at the application environment of GP (left) and CGP(right).

The CSL-expressed constraints must refer to the specific application, identified by the set of functions and termi-
nals (but not the evaluation function) the user defines for lil-gp. Thus, these sets must be made available to CGP pro-
cessing. 
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3 Overview of lil-gp Modifications
Disregarding many elements not affected by (affecting) the merger between CGP and lil-gp, the dataflow architecture
of lil-gp 1.02 can be simplified to that of Figure 3. fset is the lil-gp’s data structure storing the user provided defini-
tions for functions and terminals. These definitions are needed to generate the initial programs, to apply mutation and
crossover, and to evaluate evolving programs. 

Figure 3 lil-gp’s architecture (highly abstracted).

To create CGP lil-gp, we have implemented minimal changes into lil-gp. This will facilitate other extensions, as
well as it will allow relatively easy upgrades to future versions of lil-gp. In fact, no lil-gp’s user nor internal interfaces
has been modified. These modifications/extensions are illustrated in Figure 4 with dotted lines. The changes can be
summarized as follows:

1. After fset sets are read and stored by lil-gp (and after the functions are ordered in lil-gp 1.02 and later), a new
module create_MS_czj is called. This module accesses global fset to obtain information about functions/ter-
minals, and based on that information it interacts with the user to read the problem constraints. At the moment,
a very simple interface is provided, but it may be replaced with any other interface at a later stage.

2. Constraints are transformed into the normal form, and expressed as mutation sets MS_czj, which data is global
and available to lil-gp. 

3. Population initialization, mutation, and crossover of lil-gp are modified to interact with MS_czj in preserving
the integrity of the generated and explored programs with respect with the user-specified constraints. The first
two have minimal changes. Crossover have been reimplemented.

In addition, CGP lil-gp 1.1 provides a few minor modifications over lil-gp 1.02, which we felt were sometimes
desired (default behavior is equivalent to lil-gp’s):

1. Several new parameters are added to those of lil-gp: 
a. Initializtion parameters init.depth_abs, ={true,false}, default=false

In the default mode, this parameter has no effect over lil-gp 1.02
When set, init.depth=m-n will cause rejection of initial trees shallower than m

b. Mutation parameter depth_abs, ={true,false}, default=false
In the default mode, this parameter has no effect over lil-gp 1.02
When set, depth=m-n will cause rejection of mutation offspring shallower than m
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(it is a good idea to have keep_trying set to true as well)
c. Additional parameters have been added to the Crossover parameters.

The internal and external parameters are replaced with 2 pair of parameters which seperate their func-
tionality between the source and destination parents.  The new parameters are:
• internal (internal nodes in source parent), default = 0.9
• internal_dst (internal nodes in destination parent), default = internal
• external (external nodes in source parent), default = 0.1
• external_dst (external nodes in destination parent), default = external
These act the same way as in lil-gp 1.02 except that they allow there to be different frequencies for inter-

nal/external node selection in the source and destination parents.
d. Crossover parameters internal & external have been extended. Using them in the normal way results

in standard lil-gp 1.02 operation. Two extra parameters have been added internal_dst &
external_dst. Both default to the matching internal & external values. These allow different inter-
nal/external selection frequencies to be selected for source and destination trees.

2. A new crossover-like operator has been added; collapse. Collapse acts like crossover except that only one par-
ent is used, and the source subtree is selected from within the destination subtree. More information on this can
be found in the Users Manual. 

3. function’s index member is adjusted after functions are sorted by lil-gp (if at all). lil-gp 1.02 is apparently
not using this member except for setting it improperly, CGP lil-gp 1.1 is using it thus it updates it after sorting.
In addition, the sorting function used by qsort has been modified to sort first by arity and then alphabetically
by function name. This was to resolve different sorting results on different platforms.

Except for these, no other changes in lil-gp 1.02 are implemented. Note that since lil-gp does not deal with sets
but only with functions (terminals are not specified by sets but by generating functions) the implementation and inter-
face will somehow divert from those outlined in [4] (consult [5] instead).

It is important to note that actual mutation and initialization are not modified directly. Instead, the low level func-
tions generating subtrees have been modified. All modifications can be accessed by searching for czj string, except
for the crossover operator (operator_crossover()) which has been completely rewritten.

Note that CGP lil-gp 1.1/1.02 does not deal with ADFs [10] at the moment, but an extension is planned for the
near future.
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Figure 4 CGP lil-gp’s architecture (highly abstracted).

4 Technical Manual for CGP 2.1
The methodology for processing problem constraints is presented in [5]. Here we present necessary details for under-
standing what kinds of constrains, and how, can be used in CGP lil-gp 1.1/1.02.

4.1 CSL constraint specifications
lil-gp 1.02 does not provide for explicit (neither extensive nor even intensive) set specifications for terminals. Instead,
sets are defined by functions generating random elements, which are provided by the user. Accordingly, disregarding
ADFs, there are three different kinds of functions – we will call them functions of type I, II, and III, and their sets will
be denoted as FI, FII, and FIII. Unless explicitly stated, all references to functions imply all function types (denoted F),
and all references to terminals imply functions of type II and III. It is important to mention that lil-gp 1.02 orders func-
tions of fset so that type I functions precede all other functions.

Definition  1  A function appearing in a node of a tree is said to label that node. 

I. Ordinary functions. These are functions of at least one arguments. Therefore, they will label the internal nodes.
II. Ordinary terminal. These are functions of no arguments. Therefore, they can label the external nodes. How-

ever, they are not instantiated in a tree – they are instantiated at evaluation by external data.
III.Ephemeral random constant terminal. These are functions of no arguments. Therefore, they can label the exter-

nal nodes. Moreover, they are instantiated (possibly differently) in each appearance in each tree.

Example 1  Follow the lawnmower example from lil-gp 1.02 User’s Manual, section 6.3.1. Disregarding ADFs,
there are three type I functions (FI={frog, vma, prog2}), with , two type II functions
(FII={left, mow}), and one function of type III (FIII={Rvm}). 

Definition  2  Let us define set compatibility denoted ⇒. That is,  means that the set X can replace the
set Y. When speaking of functions, a set indicates the range of the function. When speaking of function
arguments, a set indicates the domain of the argument. When speaking of a program tree, a set indicates the
range of the function labeling the Root node. When speaking of problem specifications, a set indicates the

create_MS_czj

Read/transform

form MS_czj

MS_czj

Read functions &
terminals creating FT

fset

Generate population
of programs P

Generate P’ by

P

P’

Evaluate P’

Check termination

P’

P=P’

selection, 
mutation, crossoverconstraints into normal 

a1 1 a2, 2 a3, 2= = =

X Y⇒



6

range of values to be returned by a program. 

Proposition  1  .
∴  means that in places where values from Y are valid one may place any value from X, or any function
returning a value from X. To guarantee that no out-of-domain values are used for the original Y, X may not
contain values not found in Y. Therefore, it must be a subset of Y, or it must equal Y.

Proposition 1 will help the user determine and specify the constraints. Unfortunately, it cannot be automated since
lil-gp does not operate on explicit (neither intensive nor extensive) set definitions.

Definition  3  Define the following Tspecs (syntactic constraints): 
i)  – the set of functions which return data type compatible with the problem specification.
ii)  –  is the set of functions compatible with the jth argument of . 

In terms of a labeled tree,  is the set of functions which, according to data types, can possibly label the Root
node.  is the set of functions that can possibly label the jth child node of a node labeled . 

Tspecs reduce both the space of program templates (and thus structures) and the space of instances of those struc-
tures. Therefore, they are very powerful constraints. lil-gp allows any function of type I to label any internal node, and
any function of type II and III to label any external node. Obviously, this is not true in actual programs – different func-
tions take different arguments and return different ranges. Tspecs allow expressing such differences, thus allowing
reduction in the space of program instances per program structure. Moreover, some Tspecs also implicitly restrict what
function can call other functions, effectively reducing the space of possible program templates. Therefore, some Tspecs
can be seen analogous to function prototypes available in high level languages.

Example 2  Assume  with arities 3, 2, and 1, respectively. Assume  and
. Assume that the three type III functions generate random boolean, integers, and reals,

respectively. Assume  reads an integer. Assume  takes boolean and two integers, respectively, and returns a
real value. Assume  takes two reals and returns a real. Assume  takes a real and returns an integer. Also
assume that the problem specifications state that a solution program should compute a real number. These
assumptions are expressed with the following Tspecs:

Note that in Example 2 Proposition 1 is used by making integers compatible with reals (but not the other way
around). The example also assumes that booleans are not compatible with integers (nor with reals), which assumption
can be reversed by assuming additional interpretations (such as those in the C programming language). 

However, syntactic fit does not necessarily mean that a function should call another function. One needs additional
specifications based on program semantics. These are provided by means of Fspecs, which further restrict the space
of program templates.

Definition  4  Define the following Fspecs (semantic constraints):
i)  – the set of functions disallowed at the Root.
ii)  –  is the set of type I functions disallowed as direct callers to  (generally, a function is unaware
of the caller; however, GP constructs a program tree, which represents the dynamic structure of the program).
iii)  –  is the set of functions disallowed as  to .

Example 3  Continue Example 2. Assume that we know that the sensor reading function  does not provide the
solution to our problem. We also know that a boolean value (generated by ) cannot be the answer (this
information is redundant as it is provided in Tspecs). Also assume that for some semantic reasons we wish to
exclude  from calling itself (e.g., this is the integer-part function, which yields identity when applied to itself).
These constraints are expressed with the following Fspecs (the other sets are empty):
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4.2 Transformation of the CSL Constraints

4.2.1 Normal form
Given the above Tspecs and Fspecs, which can be used to express some problem constraints (those expressible with
this language), an obvious issue is that of possible redundancies, or that of existence of sufficiently minimal specifi-
cations. Surprisingly, after certain transformations, only a subset of Tspecs and Fspecs will turn out to be sufficient to
express all such (though not all in general) constraints. This observation is extremely important, as it will allow effi-
cient constraint enforcement mechanisms after some initial preprocessing.

The sufficient minimal set is thus important for efficient constraint processing, but not for constraint specifica-
tions, which are more easily expressed with the original Tspecs and Fspecs. This is why we need both, along with the
necessary transformations (see Figure 1).

The normal form is a set of  and all  constraints (properly transformed, see [5]).

Proposition  2  The normal form is sufficient to express all constraints of the Tspec/Fspec language.

∴ [5]

Example 4  Constraints of Example 2 and Example 3 have the following normal form:

The normal form expresses the constraints. According to Figure 1, these transformed constraints are consulted by
GP to restrict the search space. According to Figure 4, initialization, mutation, and crossover consult the constraints in
CGP lil-gp. An obvious question remains: how those operators can use the information. We propose to express the
normal form differently – in mutation sets – to facilitate efficient consultations.

4.2.2 Mutation sets
lil-gp allows parameters determining how deep to grow a subtree while in mutation. That is, lil-gp allows differentia-
tion between functions of type I and terminal nodes (labeled with type II or III). We need to provide for the same capa-
bilities.

Definition  5  Define  to be the set of functions of type I that can label (thus, excluding useless functions)
node N without invalidating an otherwise valid program tree containing the node. Define  to be the set of
terminal functions that can label node N (making it a leaf) the same way.

Definition  6  Let us denote  and  the pair of mutation sets associated with the Root. Let us denote
 and  the pair of mutation sets for the jth child of a node labeled with .

The information expressed in the normal form can be expressed with  different function sets [5],

while only two sets (one pair, expressed in fset) are needed in lil-gp itself. These sets alone are sufficient to initialize
CGP lil-gp programs with only valid trees, to mutate valid trees into valid trees, and to crossover valid trees into valid
trees [5].

4.2.3 Constraint feasibility
Unfortunately constraints may be so severe that only empty or only infinite trees are valid. This would be detected in
the initialization when no trees could be generated. However, this could be detected earlier, and the troublesome func-
tions can be identified and possibly removed from the function set. 

This feature is not fully implemented as of now – the only check is to ensure that no function has both mutation
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sets empty, which in fact detects useless functions [5].

4.2.4 CGP lil-gp mutation
lil-gp mutates a tree by selecting a random node (different probabilities for internal and external nodes). The mutated
node becomes the root of a subtree, which is grown as determined by some parameters. To stop growing, a terminal
function is used as the label. To force growing, a type I function is used as the label. Because we separate the same
type I and terminal functions (type II and III), we can use exactly the same mechanisms. The only difference is that to
label a node a subset of the original functions are used.

Operator  ‘mutation’. To mutate a node N, first determine the kind of the node (either the Root, or otherwise
what is the label of the parent and which child of that parent N is). If the growth is to continue, label the node
with a random element of  and continue growing the proper number of subtrees, each grown recursively
with the same mutation operator. Otherwise, select a random element of , instantiate it if from , and
stop expanding N.
If growing a tree and , then select a member of  (guaranteed not to be empty). If stopping the
growth and , then select a member of  (this will unfortunately extend the tree, but it is
guaranteed to stop if constraints feasiblity are fully checked).

Proposition  3  If a valid tree is selected for mutation, mutation will always produce a valid tree. Moreover,
this is done with only constant overhead.
:: [5].
Based on the problem-specific constraints, it may happen that a function will be only allowed to call other type I

functions. In the tree, it means that a node being the corresponding child of another node labeled with such a function
cannot mutate to become a leaf. 

Example 5  Assume the normal form of Example 4. Assume mutating parent1 as in Figure 5. Assume the node
N is selected for mutation. It is the 1st child of a node labeled with .  and .
If the current mode is to grow the tree, then the mutated node will be randomly labeled with either  or . If
the current node is to generate a leaf, then label N with either , , or .

Example 6  Suppose the constraints are so severe that . In this case, the only possible programs are
made of single nodes labeled with functions of type II and type III. While this cannot make a good program, it is
our assumption that the user specifies the ‘right’ constraints for the problem. In some cases it may happen that
both  and . In this case no programs can be constructed at all – this means that there are
no valid solutions made of the available functions.

4.2.5 CGP lil-gp initialization

Operator  ‘create a valid tree’. Assume that , and that functions which can only label
trees which cannot be instantiated with finite valid trees are removed from the mutation sets. To generate a
valid random tree, create the Root node, and mutate it using the mutation operator.

Proposition  4  Operator ‘create a valid tree’ will create a tree with at least one node, the tree will be finite
and valid with respect to CSL constraints.
∴ [5].

4.2.6 CGP lil-gp crossover
The idea to be followed is to generate one offspring by replacing a selected subtree from parent 1 with a subtree
selected from parent2. To generate two offspring, the same is repeated after swapping the parents.

Operator  ‘crossover’. Suppose that node N from parent1 is selected to receive the material from parent 2.
First determine  and . Assume that  is the set of labels appearing in parent2. Then,

 is the set of labels determining which subtrees from parent2 can replace the subtree of
parent1 starting with N. In other words, any subtree of parent 2 whose root is labeled with one of

 is a valid candidate for this operator.
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Figure 5 Illustration of mutation and crossover.

Example 7  Assume the normal form of Example 4. Assume parent1 and parent2 as in Figure 5. Assume the node
N is selected for replacing with a subtree of parent2. It is the 1st child of a node labeled with . Then,

 and , and only the subtrees with the shaded roots can be used to replace N.
Crossover would select a random subtree from so selected set. Note that preferences on replacing with leaves vs.
internal nodes can be imposed on the process.

Proposition  5  If two valid parents are selected for crossover, up to two valid offspring will be generated and
no invalid offspring will be generated. Moreover, this is done with the same complexity O(n) as lil-gp’s
crossover (n is thee size). 
::[5].

4.3 Overview of Modifications
All new functions have been implemented in cgp_czj.c. To avoid modifications of existing prototypes, all new data
is global. All new prototypes and declarations are provided in cgp_czj.h.

Except for operator_crossover(), in crossovr.c, and generate_random_full_tree()/
generate_random_grow_tree(), in tree.c, which has been rewritten, very minor changes have been introduced to
existing code. All other changes can be accessed by searching czj. All affected files have czj comments in the header.

cgp2_czj.c/h provide utilities for handling the constraint interface file, with their own functions and global vari-
ables. Reading constraints/heuristics info out of the file is designed as a preprocessor to cgp2.1, generating the actual
inpout file expected (temporary or retained depending on the cgp_input parameter). Details are not described in this
manual. 

4.4 Detailed Changes for Constraints

4.4.1 lnode

lnode has been changed to struct from union to accommodate two new members members: wheelExt_czj and
wheelInt_czj. These accummulate weights for feasible sources for crossover. In other words, these two members cre-
ate roulette wheel for crossover, distributed over all nodes plausinble for a given crossover, separately for external and
internal node crossover.

In addition, there is the typeVec_czj member, which is the index of the type vector in TP_czj, which itself spec-
ifies which overloaded instance of the function labeling the node was in use. For example, if the node is for function
k (using the fset ordering aftrer sorting), then TP_czj[k].f.typeVecs[typeVec_czj] is the array indicating the types
of arguments and the returning type as currently used by the function k.

4.4.2 Global variables and functions (those accessable outside cgp_czj.c)
Variables:

1. MST_czj
Stores mutation sets, along with heuristic weights and roulette wheels constructed for these. The data is repre-
sented separately for each function (and Root), each argument of a function, and each type to be produced by
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an argument of a function.
2. TP_czj

For terminals/Root, the returning type.
For functions, this data structure provides the polymorphic information: types that can be generated and argu-
ment types required.

3. Function_czj
The node to be modified has this parent. If the node to be modified is the Root then this is the number of type
I functions (pointing to the index for the Root in the MST_czj array).

4. Argument_czj
The node to be modified is this argument of its parent, 0 if the node is the Root (this indicates the index in the
MST_czj[Function_czj] array. 

5. Type_czj
The return type expected by Function_czj on its Argument_czj. For the Root, it is TP_czj[NumFT].ret-
Type. This indicates the index in the array MST_czj[Function_czj][Arg_czj]. (NumF and NumT are the number
of functions Type I and the number of terminals (type II and III). 

6. const int RepeatsSrc_czj
Used in crossover to specify how many new destinations can be tried if no feasible sources are found.

7. const int RepeatsBad_czj
Used in crossover to specify how many new sources can be tried if the resulting tree is too big.

Functions:
1. void create_czj(void)

Called to read all info and create the global vars.
2. int random_F_czj(void)/random_T_czj(void)/random_FT_czj(void)

Replace calls to random_int() in generate() functions so that only indexes which label feasible nodes (and
proportional to weights) are returned.

3. int verify_tree_czj ( lnode *tree )
Debugging functions to verify that offspring are indeed constraint-valid.

4. int markXNodes_czj( lnode *data )
Called from crossover to mark feasible nodes (for Function_czj and Argument_czj parent), while creating
the crossover wheel as well. Returns the number of marked nodes.

5. lnode *getSubtreeMarked_czj(lnode *data, int intExt)
Called after markXNodes_czj() to select one of the marked nodes (by spinning the crossover wheel). intExt
specifies whether any (0), internal (1), or external (2) node is sought. Will switch to any (0) if no desired nodes
were marked.

4.4.3 Main loop
create_czj() is called after fset is sorted.

4.4.4 Initialization
Function_czj=NumF, Argument_czj=0, Type_czj=TP_czj[NumF+NumT].retType are set at start to indicate that a
tree is generated from the Root. All other changes are in generate functions.

4.4.5 Mutation
No explicit changes. All changes in generate() and get_subtree() functions.

4.4.6 Crossover
Crossover has been rewritten. It consists of two crossovers, where the two parents are exchanged between the two oper-
ations. This is not essential, but it increases chances of generating feasible offspring for heavily constrained problems.

4.4.7 generate() functions
generate() functions are used grow subtrees. They are used in initialization and mutation. They are rewritten so that
in labeling nodes they consult MST_czj in order to create feasible labeling. Also, due to constraints, it is possible that



11

the function or terminal, even if needed, cannot be generated. Label is selected with a probability proportional to its
weight in the appriate mutation set.

4.4.8 get_subtree()

get_subtree() is lil-gp’s function to select the subtree identified by an argument. It is modified so that it updates
Function_czj, Argument_czj, Type_czj variables to indicate who is the parent of that subtree and what type is
needed.

4.4.9 Data structure for MST_czj
MST_czj stores the mutation sets, that is for a given function/Root (node) it gives information about what functions/
terminals can label an argument (child) if a given type is required from the child. It does not deal with the polymorphic
instances (TP_czj does). . The number of elements per set may vary between zero and  for , and zero to

 for . The sets are stored separately for each function (followed by the Root), each argument of the func-
tion, and each type that can be returned on this argument. 

We use exactly the same ordering as that of functions of type I and terminals (type II and III) in the functions table
of lil-gp (after sorting, which sorts by arity decreasing, then lexicographically increasing). The first is an array of

 of pointers to other arrays dealing with individual ordinary functions of type I (plus the last entry for the Root).
These pointers will point to other arrays of structures. 

MST_czj[i] will refer to type I function at index i in fset. The last entry (index [ ]) will refer to Root. The
array for function will have exactly  elements. which point to an array of structures, one structure per each type
in the application. Each structure deals with one argument-type of the function, and represents the mutation set for this
function, argument, type, along with the roulette wheel used by mutation and the weights used to construct the on-the-
fly distributed roulette wheel for crossover. See Figure 6 for an example.

Weights are only read for the members, others weights are set to -1. Any input weight <MINWGHT is changed to
MINWGHT. Any weight equal MINWGHT (double equality uses epsilon SMALL) does not get any area allocated on the wheel
(mutation wheel is illustrated in Figure 6, crossover wheels are implicit on the trees).

Figure 6 Partially allocated and instantiated MST_czj structure for the mutation sets of Example 4. .

Example 8  Figure 6 illustrates MST_czj for mutation sets pair  and . Assume the weights are 1.0, 0.01, 0.1,
1.0, 1.0, and 1.0 for the members (assume 0.01 is MINWGHT and thus does not get anything allocated on the wheel
(and is not considered for areFs). The last element in the 3rd level array, at index NumTypes, is for untyped info,
which eventually is used to initialize the remaining typed information. 

For each argument-type, we have the numnber of functions (I) and terminals (II+III) in the mutation set (numF and
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FII FIII+ T

1 FI+

FI
fi ai

fi
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numF=3
numT=3

1 2 3 4 6 7
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areTs=1
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a i
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NumF NumT

NumTypes
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Note: in the Root element, the 2nd level
array is of length 1, and the 3rd level array
has the members allocated for only the
index corresponding to the Root’s retType
Note: for other functions, the 3rd level members allocated only for types produced by the function

F1
1 T1

1
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numT). mbs array is allocated for the total of these, and so is the wheel, while the weights array is allocated for all
functions and terminals. Weight -1 indicates absence of the element in this mutation set (and absence in mbs and in
wheel). Presence but with 0 weight is indicated by MINWGHT value and thus non-zero (again, these are non-zero for
future processing but currently not counted in numF/T and areFs/Ts). Note that areFs != !!numFs (same for Ts).
numF counts the number of functions in the mutation set. However, the functions can be set or not to MINWGHT. This is
what areFs indicates. 

This structure will be allocated and initialized by void create_czj(void). 
To redirect consulting from fset to MST_czj, we will replace the existing calls to int random_int(int) with

calls to int random_F_czj(void), int random_T_czj(void), int random_F_czj(void), appropriately when a
function to grow is needed, a function to terminate growth is needed, or a random function is needed. These random
functions will consult MST_czj. When a particular function is not available (i.e., when the mutation set is empty, the
other (  and ) set will be used (both empty is an error). 

4.4.10 Data Structures for TP_czj
The TP_czj data structure is illustrated in.Figure 7. It stores information about polymorphic instances of overloaded
functions, and about data types returned by terminals and tthe Root. In the part dealing with the functions, all over-
loaded instances are recorded. In the illustration,there are two types, and the function  has two arguments. It has three
polymorphic instances, represented in the 2-d array typeVecs. The first instance (.f.typeVecs[0]) produces type 0,
while the two other instances (.f.typeVecs[1] and .f.typeVecs[2]) produce type 1. The number and location of
the actual instances are recorded in indexes[1] (for type 1). len=2 indicates two instances, and indexes[1].indexes
is the array listing the row numbers in the 2-d array typeVecs where the actual instances are represented. In the exam-
ple, the first instance (.f.typeVecs[1]) requires type 0 and 1 on the arguments, respectively, while the second
instance requires type 1 and 1. 

Figure 7 TP_czj data structure. The first array is of a union type over functions and terminals/Root. 

4.4.11 How the MST_czj and TP_czj Data Structures are used

4.4.11.1 Initialization
1. Function_czj=NumF pointing to MST[NumF] containing the Root info
2. Argument_czj=0 since Root has only one info
3. Type_czj=TP_czj[NumF+NUmT].retType fetch the Root’s returning type
4. Proceed with growing a tree as in mutation, except for different parameters controlling the growth.

4.4.11.2 Mutations
1. Prepare

T F

f0

fi

t0

Root

TP_czj

tj
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NumT

retType

f struct member
numA=2
numTypeVecs=3
typeVecs
indexes

ai

0

1

2

retType

numTypeVecs

NumTypes

len=2
indexes 1 2

0 0 0

0 1 1

1 1 1

1

Note: len=0 and indexes=NULL
if fi cannot produce this type number
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• Function_czj must be set to indicate the parent function index (NumF if mutating the Root).
• Argument_czj must be set to indicate which argument of the parent we are mutating (0 if the Root).
• Type_czj must be set to the desired type to be generate. If this is the Root node, it is TP[NumFT].ret-

Type. Otherwise, it we take the .typeVec member from the parent node. We then fetch
Type_czj=TP[Function_czj].f.typeVecs[parentNode.typeVec][Argument_czj].

2. Spin the wheel for the proper mutation set: MST_czj[Function_czj]{Argument_czj][Type_czj].wheel
selecting say index k. Note that the wheel can be span seperately for selecting functions or terminals or both
depending on context and parameters). 
This is done through calls to random_F_czj()/random_T_czj() and random_FT_czj() respectively. 

3. After the index k to label the mutated node is selected
• If k refers to a terminal, just label the node
• If k refers to a function, then must select the overloaded instance of the function and contiunue recur-

sively for all children according to the typeVecs information for the instance.
• select the instance as a random element’s value from the array

n=TP_czj[k].f.indexes[Type_czj].indexes 
(array of length TP_czj[k].f.indexes[Type_czj].len)

• select the instance represented by TP_czj[k].f.typeVecs[n] (and store in node.typeVec).
• continue for all children

4.4.11.3 Crossovers
1. Crossover is prepared as in mutation, according to the parent of the destination subtree. 
2. After the destination is selected, the source tree is traversed, and the wheel is constructed, using

markXNodes_czj(). The nodes that are labeled with elements of the mutation set for the destination element
(based on its parent) are used to constructed the distributed roulette wheel, according to the heuristic weights
from the mutation set, and using the two extra members of the lnode.

3. The totals of the wheel (external or external as needed) is used to spin the roulette, and the position of the node
is determined. Then a second traversal selects the node at this position from among those marked, using
getSubtreeMarked_czj().

4.4.12 Function/Type Information in the Tree Structure
Figure 8 The information in the tree structure in CGP1.1 (left) andA CGP2.1 (right). From among the old lnode 

members only f is shown. Also not shown are wheelExt_czj/wheelInt_czj members which are used for 
the distributed roulette. The typeVec_czj member is actually an index to TP_czj.

Figure 8 illustrates the function/type information maintained in the tree (in the lnodes). The wheelExt_czj/
wheelInt_czj are the members used to construct the distributed crossover roulette wheel and not used. As seen, each
node remembers not only the function (terminal) being the label, but also the actual overloaded instance
(typeVec_czj). The instance says what are types expected of the children and then what is the type produced by the
node.

fi
f

ff
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5 User Manual for CGP2.1

5.1 Strong Constraints: Tspec / Fspec Constraints
Tspecs and Fspecs are sets of functions and terminals with some common characteristic.

• Tspecs are those functions/terminals which are compatible with a specific argument of a function
(T_func_n), and those functions/terminals allowed to be the Root (T_Root). (syntactic constraint)

• Fspecs are those functions/terminals which are not compatible as a specific argument of a function
(F_func_n), those functions which are not allowed to directly call a given function (F_func), and
also those functions/terminals not allowed to be the Root (F_Root). (semantic constraint)

When specifying these constraints you must specify Tspecs for everything you wish to allow. The Tspecs and
Fspecs are converted to their Normal form, consisting entirely of Fspecs. These Normal Form Fspecs are what are used
to construct the Untyped Mutation Sets (see Section 5.4).

5.1.1 Tspec / Fspec Example
Listed here, in the order that they are requested in the interactive user interface are some example Fspecs and Tspecs.

Example 9  F_add = sin cos
This prevents sin() and cos() from calling add (e.g. sin(x+y) is not allowed).

Example 10  F_add_0 = 0 PI log
This prevents 0, PI, log() from being argument 0 of add (e.g. (PI + x) is not allowed, but (x + PI) may be).

Example 11  T_add_0 = sin cos 0 PI
This allows sin(), cos(), 0, and PI to be argument 0 of add. However, the Fspec, F_add_0, overrides this Tspec,
and so only sin() and cos() are actually allowed.

Example 12  F_add_1 = 0 PI
This prevents 0, PI from being argument 1of add (e.g. (x + PI) is not allowed).

Example 13  T_add_1 = sin cos 0 PI
This allows sin(), cos(), 0, and PI to be argument 1of add. However, the Fspec, F_add_1, overrides this Tspec, 
and so only sin() and cos() are actually allowed.

Example 14  F_ROOT = log 0 PI
This prevents the function log, and the terminals 0 and PI from being the Root.

Example 15  T_ROOT = add sin cos
This allows the functions add, sin, and cos to be the Root.

5.2 Weak Constraints (Heuristics): Weight Constraints
Normally all functions/terminals have the same probability of being selected to be used as an argument to a function.
The Weights section of the interface allows you to change this default behavior. The Weight constraints do not affect
nor interact with Type constraints.

The weight of any function/terminal is in the range (0,1]. Using only the Weight constraints, you cannot absolutely
prevent a function/terminal from being used. This is because any weight specified as 0 (Zero) is converted to a defined
constant , defined in kernel*/cgp_czj.c. If you desire to absolutely prevent a function/ter-
minal from being used, you need to specify the appropriate Fspec.

When you are given the chance to enter the weights, only those function/terminals which appear in the Untyped
Mutations Set are used (see Section 5.4). So, if a function is disallowed through Fspecs, you are not asked for the
weight for it.

Currently, the weights remain constant throughout the execution of the program. Work is currently underway to
implement mechanisms for the automatic adjusting of the weights during program execution.

5.2.1 Weight Constraint Example

Example 16  Assume we have 4 functions(f1, f2, f3, f4) and 4 terminals(t1, t2, t3, t4). Through Fspecs, t2 was

MINWGHT 0.00001≈
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excluded from being an argument to function fn. Then the weights are given as f1=1.0, f2=0.0, f3=0.1, t1=1.0,
t3=1.0, t4=1.0. The total weight of all function/terminals for this argument = f1 + f2 + f3 + t1 + t3 + t4 = 4.1. The
probability p(), of any function/terminal being selected as this particular argument is p((f/t)n) = ((f/t)n) / (total
weight). So p(f1,t1,t3,t4) = 1.0/4.1 = 0.244, p(f2) = MINWGHT/4.1 =  , p(f3) = 0.1/4.1 = 0.0244, p(t2)
= 0.0. 

5.3 Type Constraints
Type constraints provide additional method of strongly constraining the mutation sets. Without type constraints it
would be possible, with normal arithmetical and trigonometric functions, to generate a subtree which would evaluate
to: asin(x) + sin(x), which under normal circumstances doesn’t make much sense. With the type constraints,
add() can be instructed not to add a non-angle with an angle, etc. (Note: The type constraints do not in any way
perform type casting of functions, terminals, or arguments. If a function is to be able to accept multiple data
types, then the function must be written in such a way as to make that possible.)

It can prevent occurrences of subtrees like that shown in Example 17, or Example 18, if that kind of restriction is
what you would desire.

Example 17  sin(mult(PI,sin(sqrt(PI))))

Example 18  If there are variables of various units, such as S(seconds), M(mass), D(distance), T(temperature),
then subtrees like this could be avoided: add(add(S,M),add(D,T)).

5.3.1 Type Constraint Example
To begin with, you specify every data type that your problem uses. (Note: The data types specified here do not

necessarily have anything to do with the actual data types of your functions/terminals/arguments) Then, starting
with the highest arity (argument count) functions working down to the terminals, and sorted alphabetically, every
instance of a function is listed. with its arguments and return type (see Example 19). After listing every instance of
every function, the return types of each of the terminals and of the root of the problem are listed.

Example 19  There may be a problem needing data types: angle, length, force, force-length, and number. And, the
multiply() function which takes 2 arguments could have the following instances (vectors).
<arg1> <arg2> <return>
number length length
length number length
number angle angle
angle number angle
number number number
length force force-length
force length force-length

All of this means that if multiply() is called with a number and a length, it will return a length. If it is called
with a number and an angle, it will return an angle. If it is called with two numbers it just returns a number. And,
if it is called with a length and a force, it returns a force-length (e.g. 3 lbs. * 5 ft. = 15 ft-lbs.).

The type constraints also allow you to reuse a single function is several ways. This can allow you to easily create
a specific “structure” for your trees as is shown in Example 20.

Example 20  You have a defined structure (full & complete binary tree of height 4, with an and/or for each
internal node) you’re trying to create from a limited set of functions. Without type constraints you would have to
create different and & or functions for each level. With type constraints, however, you can specify different types
(e.g. L0, L1, L2, L3, L4). So that, all terminals return type L4, and the Root takes type L0. The and & or
functions then have instances such as:
Arg1 Arg2 Return
L1 L1 L0
L2 L2 L1
L3 L3 L2
L4 L4 L3

2.439 6–×10
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This will cause the generation of only those trees which match the above specified structure.

5.4 Mutation Sets
Mutation Sets are the constructs that CGP uses to keep track of the structure of valid trees. A mutations set consists of
the functions and terminals that are allowed to represent an argument of a function.

The initial mutation set, called the Untyped Mutation Set, is constructed from the Normal Form Fspecs. Any func-
tion/terminal listed in an Fspec is removed from the corresponding portion of the Untyped Mutation Set.

The Untyped Mutation Set is combined with the Type Constraint (see Section 5.3) information to yield the final
Typed Mutation Sets, which are then used for the construction of the trees. Any function/terminals which has a type
that is not compatible with the argument in which it is referenced, is removed from the Mutation Set for that argument.

Upon examining the Typed Mutation Set, the true power of it may not be apparent. In Section 5.7.1 towards the
end of the listing, the example shows the Typed Mutation Set. Even though the function add appears in every set for
every argument of every function, it is not the same instance of the add function. The particular instance of the func-
tion is partially determined by which Type it is under. That is to say the add function under a Type ‘angle’ section is
strictly the add function which takes two angles as arguments and returns an angle.

5.5 Initialization and Operator Modifications
Modifications to lil-gp have been kept to a minimum. However some changes seemed prudent to help enable it to
respond more closely to the users intent.

5.5.1 Initialization Parameters
Please refer to the “lil-gp 1.0 User’s Manual” [11] for a complete description of the standard initialization parameters.

A couple of additional Initialization Parameter have been added. One to help control tree generation and two to
provide information regarding the input files. And, like all parameters, they may be specified in a parameter file or on
the command line. Please see the lil-gp Users Manual [11] for further information on using parameters and parameter
files.

5.5.1.1 Tree Creation Parameter
• init.depth_abs = {true,false}, default = false.

This parameter is used to prevent the generation of initial trees shallower than that specified by the depth ramp.
In the default mode, this new parameter has no effect over lil-gp. When init.depth_abs is set to true,
init.depth=m-n will cause rejection of initial trees shallower than m. lil-gp’s default behavior allows trees to
be shallower than m. (Technical Note: this can occur during a call to generate_random_grow_tree()).

5.5.1.2 Interface Parameters
• cgp_interface - The file containing the constraint creation instructions.
• cgp_input - The file which is to be created from the constraint instructions, if the parameter

cgp_interface is specified. This file will then act as the input to CGP lil-gp.
Detailed information about these parameters can be found in Section 5.8.2.

5.5.2 Mutation Operator
An additional Mutation Parameter has been added to prevent the Mutation Operator from allowing the mutated subtree
from being shallower than that specified by the depth parameter.

5.5.2.1 Mutation Parameters
• depth_abs ={true,false}, default=false. 

In the default mode, this new parameter has no effect over lil-gp. When depth_abs is set to true, depth=m-
n will cause rejection of mutated subtrees shallower than m (it is a good idea to have keep_trying set to true as
well). lil-gp’s default behavior allows the Mutation operator to mutate a subtree shallower than m. (Technical Note:
this can occur during a call to generate_random_grow_tree()).



17

5.5.3 Crossover Operator
Additional parameters have been added to the Crossover parameters.
The standard internal and external parameters are replaced with 2 pair of parameters which separate the func-
tionality between the source and destination parents. 

5.5.3.1 Crossover Parameters
• internal (internal nodes in source parent), default = 0.9
• internal_dst (internal nodes in destination parent), default = internal
• external (external nodes in source parent), default = 0.1
• external_dst (external nodes in destination parent), default = external

These act the same way as in lil-gp except that there can be different frequencies for internal/external node selec-
tion in the source and destination parents. 

5.5.4 Collapse Operator (New)
The Collapse operator is similar to the Mutation operator in that it causes a single parent to mutate into a single off-
spring. Collapse chooses a random subtree, from a given parent tree, to be the destination. Another subtree is chosen,
from within the destination subtree, as the source (see Figure 9). All of the nodes in the destination subtree that are not
also in the source subtree are removed. This results in the destination subtree being removed, and the source subtree
moved into its place. See also Example 21.

Figure 9 Illustration of Collapse operation

Example 21  Here is a sample individual (tree) from an actual experiment. This can be read as LISP function calls,
where (atan2 y x) corresponds to atan2(y,x) in the C language.

Parent: (fkin (sub (atan2 y x)
(acos (div (div x 2) x)))

(acos (add 2
(sub 1

(div (hypot x y) L1)))))
(The function sub performs subtraction, and the function div performs division. The function fkin simply
causes its 2 subtrees to execute in order.) So, if sub on the first line is chosen as the beginning of the Destination
subtree of collapse, and if (div x 2) is chosen as the Source subtree, then the resulting offspring would be:
Offspring: (fkin (div x 2)

(acos (add 2
(sub 1

(div (hypot x y) L1)))))

5.5.4.1 Collapse Parameters
• select - same as for Mutate
• keep_trying - same as for Mutate

Destination

Source

Parent Offspring

Source
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• internal - same as for Mutate
• external - same as for Mutate
• tree -same as for Mutate
• treen - same as for Mutate

5.6 CGP lil-gp Interactive Interface
The interface to CGP lil-gp is an interactive system. Constraints are entered using function names. Listing order is irrel-
evant. Repetitions are disregarded. Functions are sorted by arty and then alphabetically by name.

5.7 Interactive Interface Description
An interactive interface is part of the modifications which CGP lil-gp 2.1;1.02 has added to lil-gp. The interface can
be broken up into the following sections:

1. Type Information (optional)
a. User defined data entry section
b. Display of Type Vectors

2. Tspecs & Fspecs (optional)
a. User defined data entry section
b. Display of Tspec & Fspec Constraints
c. Display of Normal Constraints (Tspec’s & Fspec’s converted to Fspec-only)
d. Display of Untyped Mutation Sets

3. Weights (optional)
a. User defined data entry section

4. Display of Typed Mutation Sets

5.7.1 Interactive Interface Example
Note: This example is of a problem with the functions (add, asin, sin), and terminals(1, PI, x, y). All user’s
responses are in italics.
Note: Type Information Section (see Section 5.3 for more information).

<...>
Reading Type information...

Note: You are asked for the Type constraints (see Section 5.3) of the functions and their arguments.

Default is a single 'generic' type. Accept? [0 to change]:
0<ENTER>

List type names: float integer angle
Specs for 'add' [2 arg and one ret types /<ENTER> for no more]

:float float float<ENTER>
Specs for 'add' [2 arg and one ret types /<ENTER> for no more]

:integer float float<ENTER>
Specs for 'add' [2 arg and one ret types /<ENTER> for no more]

:float integer float<ENTER>
Specs for 'add' [2 arg and one ret types /<ENTER> for no more]

:integer integer integer<ENTER>
Specs for 'add' [2 arg and one ret types /<ENTER> for no more]

:angle angle angle<ENTER>
Specs for 'add' [2 arg and one ret types /<ENTER> for no more]

:<ENTER>

Specs for 'asin' [1 arg and one ret types /<ENTER> for no more]
:float angle<ENTER>
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Specs for 'asin' [1 arg and one ret types /<ENTER> for no more]
:integer angle<ENTER>

Specs for 'asin' [1 arg and one ret types /<ENTER> for no more]
:<ENTER>

Specs for 'sin' [1 arg and one ret types /<ENTER> for no more]
:angle float<ENTER>

Specs for 'sin' [1 arg and one ret types /<ENTER> for no more]
:<ENTER>

Give ret type for terminal '1': integer<ENTER>
Give ret type for terminal 'PI': angle<ENTER>
Give ret type for terminal 'x': float<ENTER>
Give ret type for terminal 'y':float<ENTER>
Give return type for the problem: angle<ENTER>

Note: All valid type vectors are now displayed

The following types are used...
Function 'add': numArg=2, numTypeVecs=5

vec0: 0:'float' 1:'float' -> 'float'
vec1: 0:'integer' 1:'float' -> 'float'
vec2: 0:'float' 1:'integer' -> 'float'
vec3: 0:'integer' 1:'integer' -> 'integer'
vec4: 0:'angle' 1:'angle' -> 'angle'
Type 'float' returned from vectors: 0 1 2 
Type 'integer' returned from vectors: 3 
Type 'angle' returned from vectors: 4 

Function 'asin': numArg=1, numTypeVecs=2
vec0: 0:'float' -> 'angle'
vec1: 0:'integer' -> 'angle'
Type 'angle' returned from vectors: 0 1 

Function 'sin': numArg=1, numTypeVecs=1
vec0: 0:'angle' -> 'float'
Type 'float' returned from vectors: 0 

Terminal '1': -> 'integer'
Terminal 'PI': -> 'angle'
Terminal 'x': -> 'float'
Terminal 'y': -> 'float'
Root: -> 'angle'

Note: Tspec & Fspec section for more information).

Reading F/Tspec information...

Default is empty Fspecs, full Tspecs. Accept? [0 to change]:
0<ENTER>

3 ordinary function (Note: this is displayed for each function)
add asin sin 

4 terminals (ordinary and ephemeral):
1 PI x y 

Separate entries by [ ,;]
Hit <ENTER> for empty set
Use function names in any order

Function 'add':
F_add (exclusions) [up to 3 names] = <ENTER>
F_add_0 (exclusions) [up to 7 names] = <ENTER>
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T_add_0 (inclusions) [up to 7 names] = add asin sin 1 PI x y<ENTER>
F_add_1 (exclusions) [up to 7 names] = <ENTER>
T_add_1 (inclusions) [up to 7 names] = add asin sin 1 PI x y<ENTER>

Note: this is asking you for the Tspecs and Fspecs of the functions and their arguments.
• F_add = Fspec for the add function (List all functions which cannot directly call add)

• F_add_0 = Fspec for Argument 0 of the add function (List all functions which cannot be argu-
ment 0 of the add function)

• T_add_0 = Tspec for Argument 0 of the add function (List all functions which can be argu-
ment 0 of the add function)

• F_add_1 = Fspec for Argument 1of the add function (List all functions which cannot be argu-
ment 1of the add function)

• T_add_1 = Tspec for Argument 1of the add function (List all functions which can be argu-
ment 1of the add function)

<...>
Function 'asin':

F_asin (exclusions) [up to 3 names] = <ENTER>
F_asin_0 (exclusions) [up to 7 names] = <ENTER>
T_asin_0 (inclusions) [up to 7 names] = add asin sin 1 PI x y<ENTER>

<...>
Function 'sin':

F_sin (exclusions) [up to 3 names] = <ENTER>
F_sin_0 (exclusions) [up to 7 names] = add <ENTER>
T_sin_0 (inclusions) [up to 7 names] = add asin sin 1 PI x y<ENTER>

<...>
Root:

F^Root (exclusions) [up to 7 names] = asin<ENTER>
T^Root (inclusions) [up to 7 names] = add asin sin 1 PI x y<ENTER>

Note: The Tspecs and Fspecs for the Root are slightly different.

• F^Root = Fspec for the Root (List all functions which cannot be the root function)

• T^Root = Tspec for the Root (List all functions which can be the root function)
Note: based on conditional compilation, constraints may be echoed. This section displays the constraints as you
entered them, and then as converted into the Normal Constraints. The || separates functions from terminals.

Read the following constraints...

CONSTRAINTS
Function 'add' [#0]:

F_add [#Fs=0:#Ts=0] = ||
F_add_0 [#Fs=0:#Ts=0] = ||
F_add_1 [#Fs=0:#Ts=0] = ||
T_add_0 [#Fs=3:#Ts=4] = 'add' 'asin' 'sin' || '1' 'PI' 'x' 'y'
T_add_1 [#Fs=3:#Ts=4] = 'add' 'asin' 'sin' || '1' 'PI' 'x' 'y'

Function 'asin' [#1]:
F_asin [#Fs=0:#Ts=0] = ||
F_asin_0 [#Fs=0:#Ts=0] = ||
T_asin_0 [#Fs=3:#Ts=4] = 'add' 'asin' 'sin' || '1' 'PI' 'x' 'y'

Function 'sin' [#2]:
F_sin [#Fs=0:#Ts=0] = ||
F_sin_0 [#Fs=1:#Ts=0] = 'add' ||
T_sin_0 [#Fs=3:#Ts=4] = 'add' 'asin' 'sin' || '1' 'PI' 'x' 'y'
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Root:
F_Root [#Fs=1:#Ts=0] =  'asin' ||
T_Root [#Fs=3:#Ts=4] =  'add' 'asin' 'sin' || '1' 'PI' 'x' 'y'

The normal constraints are...

CONSTRAINTS
Function 'add' [#0]:

F_add_0 [#Fs=0:#Ts=0] = ||
F_add_1 [#Fs=0:#Ts=0] = ||

Function 'asin' [#1]:
F_asin_0 [#Fs=0:#Ts=0] = ||

Function 'sin' [#2]:
F_sin_0 [#Fs=1:#Ts=0] = 'add' ||

Root:
F_Root [#Fs=1:#Ts=0] =  'asin' ||

Note: This section displays the mutation sets as if the generic type were used. F[] = functions, T[] = terminals.

The following untyped mutation sets are used...

Function 'add': arity 2 
Argument 0

Type unconstrained mutation set
F [3 members] = 'add' 'asin' 'sin'
T [4 members] = '1' 'PI' 'x' 'y'

Argument 1
Type unconstrained mutation set

F [3 members] = 'add' 'asin' 'sin'
T [4 members] = '1' 'PI' 'x' 'y'

Function 'asin': arity 1 
Argument 0

Type unconstrained mutation set
F [3 members] = 'add' 'asin' 'sin'
T [4 members] = '1' 'PI' 'x' 'y'

Function 'sin': arity 1 
Argument 0

Type unconstrained mutation set
F [2 members] = 'asin' 'sin'
T [4 members] = '1' 'PI' 'x' 'y'

Root:
Type unconstrained mutation set

F [2 members] = 'add' 'sin'
T [4 members] = '1' 'PI' 'x' 'y'

Note: Weights Section (see Section 5.2 for more information).
Note: Entering 0 here will prompt you to enter all weights, similar to entering constraints above.

Setting initial weights for mutation set members...
Initial weights are all equal. Do you accept [0 to change]: 

0<ENTER>
Function 'add': 2 mutation set pairs
Argument 0:
F [3 members] = 'add' 'asin' 'sin'

T [4 members] = '1' 'PI' 'x' 'y'

Reading the weights for type I functions...
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Function 'add': give weight (0,1]: 0.25<ENTER>
Function 'asin': give weight (0,1]: 0.25<ENTER>
Function 'sin': give weight (0,1]: 0.5<ENTER>
Reading the weights for type II/III terminals...
Terminal '1': give weight (0,1]: 0.2<ENTER>
Terminal 'PI': give weight (0,1]: 0.2<ENTER>
Terminal 'x': give weight (0,1]: 0.3<ENTER>
Terminal 'y': give weight (0,1]: 0.4<ENTER>

Argument 1:
F [3 members] = 'add' 'asin' 'sin'
T [4 members] = '1' 'PI' 'x' 'y'

Reading the weights for type I functions...
Function 'add': give weight (0,1]: 0.25<ENTER>
Function 'asin': give weight (0,1]: 0.25<ENTER>
Function 'sin': give weight (0,1]: 0.5<ENTER>
Reading the weights for type II/III terminals...
Terminal '1': give weight (0,1]: 0.2<ENTER>
Terminal 'PI': give weight (0,1]: 0.2<ENTER>
Terminal 'x': give weight (0,1]: 0.3<ENTER>
Terminal 'y': give weight (0,1]: 0.4<ENTER>

Function 'asin': 1 mutation set pairs
Argument 0:

F [3 members] = 'add' 'asin' 'sin'
T [4 members] = '1' 'PI' 'x' 'y'

Reading the weights for type I functions...
Function 'add': give weight (0,1]: 0.25<ENTER>
Function 'asin': give weight (0,1]: 0.25<ENTER>
Function 'sin': give weight (0,1]: 0.5<ENTER>
Reading the weights for type II/III terminals...
Terminal '1': give weight (0,1]: 0.2<ENTER>
Terminal 'PI': give weight (0,1]: 0.2<ENTER>
Terminal 'x': give weight (0,1]: 0.3<ENTER>
Terminal 'y': give weight (0,1]: 0.4<ENTER>

Function 'sin': 1 mutation set pairs
Argument 0:

F [2 members] = 'asin' 'sin'
T [4 members] = '1' 'PI' 'x' 'y'

Reading the weights for type I functions...
Function 'asin': give weight (0,1]: 0.5<ENTER>
Function 'sin': give weight (0,1]: 0.4<ENTER>
Reading the weights for type II/III terminals...
Terminal '1': give weight (0,1]: 0.6<ENTER>
Terminal 'PI': give weight (0,1]: 0.4<ENTER>
Terminal 'x': give weight (0,1]: 0.3<ENTER>
Terminal 'y': give weight (0,1]: 0.1<ENTER>

Root:
F [2 members] = 'add' 'sin'
T [4 members] = '1' 'PI' 'x' 'y'

Reading the weights for type I functions...|
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Function 'add': give weight (0,1]: 1<ENTER>
Function 'sin': give weight (0,1]: 1<ENTER>
Reading the weights for type II/III terminals...
Terminal '1': give weight (0,1]: 1<ENTER>
Terminal 'PI': give weight (0,1]: 0.2<ENTER>
Terminal 'x': give weight (0,1]: 1<ENTER>
Terminal 'y': give weight (0,1]: 1<ENTER>

Note: End of Weights Section and start of the Display of Typed Mutation Sets Section
Note: This section displays the typed mutation sets. It shows the valid types of each argument, for every func-
tion, along with the functions and terminals of that type which can be used in that argument.

The following typed mutation sets are used...

Function 'add': arity 2 
Argument 0

Type 'float'
F [2 members] = 'add' 'sin'
T [2 members] = 'x' 'y'

Type 'integer'
F [1 members] = 'add'
T [1 members] = '1'

Type 'angle'
F [2 members] = 'add' 'asin'
T [1 members] = 'PI'

Argument 1
Type 'float'

F [2 members] = 'add' 'sin'
T [2 members] = 'x' 'y'

Type 'integer'
F [1 members] = 'add'
T [1 members] = '1'

Type 'angle'
F [2 members] = 'add' 'asin'
T [1 members] = 'PI'

Function 'asin': arity 1 
Argument 0

Type 'float'
F [2 members] = 'add' 'sin'
T [2 members] = 'x' 'y'

Type 'integer'
F [1 members] = 'add'
T [1 members] = '1'

Function 'sin': arity 1 
Argument 0

Type 'angle'
F [1 members] = 'asin'
T [1 members] = 'PI'

Root:
Type 'angle'

F [1 members] = 'add'
T [1 members] = 'PI'

Send 1 to continue, anything else to quit cgp-lil-gp: 1<ENTER>

5.8 Interface File
The Interface File, described below, uses a simple language to describe the constraints you wish to specify. It takes this
information, and converts it into an input file, which CGP then reads from instead of reading from the keyboard during
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use of the Interactive Interface (Section 5.6). 

5.8.1 Interface File Overview
There are 4 sections in the Interface File. The first three sections may appear in any order, and may even be

repeated. No section has any effect on the other sections. This file must contain at least the End of File Marker. The
sections are:

1. Fspec/Tspec Constraints (optional)
2. Weight Constraints (optional)
3. Type Constraints (optional)
4. End of File Marker (required)

5.8.2 Interface File Parameters
Two new parameters have been added to all flexibility in the use of this new interface. They are:

• cgp_interface - The file containing the constraint creation instructions.
• cgp_input - The file which is to be created from the constraint instructions, if the parameter

cgp_interface is specified. This file will then act as the input to CGP lil-gp.
And, like all parameters, they may be specified in a parameter file or on the command line. Please see the lil-gp

Users Manual [11] for further information on this. Depending on how you specify these parameters, several things may
happen:

1. Nothing specified - Use Interactive Interface
2. Specify cgp_input only - The specified file is used for the Interactive Interface instead of the keyboard.
3. Specify cgp_interface only - A temporary file is created for the input file, and deleted when finished.
4. Specify both - The interface file is used to create the input file. The input file, may later be used as in option 2.

5.8.3 Interface File Definitions
• funclist = list of applicable functions
• termlist = list of applicable terminals
• functermlist = list of applicable functions & terminals
• arglist = list of applicable argument numbers (0...arity) (i.e. the arglist for sin() is 1 item long.)
• weightlist = list of applicable weights (user defined in interface file),

• typelist = list of valid types (user defined in interface file)
• type = a single valid type from typelist
• argtypelist = list of the valid type for each argument in a particular instance (length defined by

arity; i.e. the argtypelist for sin() is 1 item long.)
• null = empty list (not actually typed in, just hit the <ENTER> key)
• * = wildcard, include all elements from applicable list. Any item appearing after a wildcard is ignored.
• # = begin of comment. Comments continue until end-of-line. Valid characters are “*#” + space + alpha-

numerics.

5.8.4 Interface File Sections
There are 3 sections corresponding to Fspecs/Tspecs, Weights, and Types. These sections may appear in any order. If
a section appears, even if empty, it will override the default behavior of CGP, so care must be taken to ensure that
enough information is present to allow CGP to have enough constraint information.

length weightlist( ) length functermlist( )≤
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5.8.5 Fspec/Tspec Constraints
The Section Header and Footer must be present if this section is to be used. If this section appears, even if no specs are
listed, then any items not appearing in a Tspec will be placed in the appropriate Fspec of the Normal Constraints. If an
item appears in both an Fspec and the corresponding Tspec, then the Fspec will take precedents. Once a Spec is spec-
ified it cannot be overridden, with the exception of an Fspec overriding a Tspec.

5.8.5.1 Syntax

FTSPEC (Note: Section Header)

F_(funclist | *) = funclist | * | null

F_(funclist | *)[arglist | *] = functermlist | * | null

T_(funclist | *)[arglist | *] = functermlist | * | null

F_ROOT = functermlist | * | null

T_ROOT = functermlist | * | null

ENDSECTION (Note: Section Footer)

5.8.5.2 Default Behavior
If this section is omitted, then all FSpecs are left empty and all TSpecs are full. If the section header is given, then all
Fspecs and Tspecs default to the empty set. If no TSpecs are entered, this will result in normal constraints being gen-
erated with full Fspecs, yielding no possible tree growth.

5.8.6 Weight Constraints
The Section Header and Footer must be present if this section is to be used. If this section appears, even if no specs are
listed, then any items not appearing in a Weight specification will be given a weight of 1.0. Any weight may be over-
ridden by specifing a new weight.
Note: if there are fewer elements in weightlist than in functermlist, the last element in weightlist will be used for
the remaining elements in functermlist.

5.8.6.1 Syntax

WEIGHT (Note: Section Header)

(funclist | *)[arglist | *](functermlist | *) = weightlist

ROOT(functermlist | *)= weightlist

ENDSECTION (Note: Section Footer)

5.8.6.2 Default Behavior
Whether this section is used or not, the default behavior is to set all the weights to 1.0.

5.8.7 Type Constraints
The Section Header and Footer must be present if this section is to be used. If this section appears, TYPELIST must
be the first item following it. Also, there must be an entry for every function, terminal, and the Root. Once an instance
of a function has been specified, it cannot be overridden. However, terminals and the Root may be specified multiple
times but the last entry for each will be the one used.

5.8.7.1 Syntax

TYPE (Note: Section Header)

TYPELIST = typelist (Note: Define valid types)

(funclist)(argtypelist) = type

(termlist | *) = type

ROOT = type
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ENDSECTION (Note: Section Footer)

5.8.7.2 Default Behavior
If this section is omitted, then only a generic type is used. If the section header is given, then all types, functions, ter-
minals, and the Root are undefined. 

5.8.8 End of File Marker

ENDFILE (Note: Section Footer)

5.8.9 Interface File Example
The Interactive Interface Example, Section 5.7.1, can be duplicated in the Interface File by the following Interface File
example.

FTSPEC
F_(*)= #not required since it’s empty
F_(*)[*]= #not required since it’s empty
F_(sin)[0]=add #prevent sin(_+_)
F_ROOT=asin #prevent asin() from being the root
#must specify some TSpecs
T_(*)[*]=* #allow all TSpecs
T_ROOT=* #allow all functions/terminals for Root
ENDSECTION

WEIGHT
#All unspecified weights default to 1.0
#If I desire to reduce the odds of everything but that which
# I explicitly specify, I could do the following
#(*)[*](*)=0
#ROOT(*)=0
#
#Set the weights for the functions: add asin sin 1 PI x y,
#as the arguments for the add & asin functions.
(add asin)[*](*)=.25 .25 .5 .2 .2 .3 .4
#similarly for the sin function
(sin)[0](*)=.5 .4 .3 .6 .4 .3 .1
ROOT(*)=1 #not really needed as default is 1.0
ROOT(PI)=.2
ENDSECTION

TYPE
TYPELIST = float integer angle #list of all valid types
(add)(float float)=float #add() instances
(add)(integer float)=float
(add)(float integer)=float
(add)(integer integer)=integer
(add)(angle angle)=angle
(asin)(float)=angle #asin() instances
(asin)(integer)=angle
(sin)(angle)=float #sin() instance
(1)=integer #terminal types
(PI)=angle
(x y)=float
ROOT=angle #Root return type
ENDSECTION

ENDFILE
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5.9 Input File Interface Redirection
If you intend to run multiple experiments, or if the data entry section is overly long, you may wish to create an input
file which contains all user inputs and which can be redirected into the program at run-time. At the present time, gen-
eration of this file is a manual process, and must match exactly what you intend for the input. Work is underway to
provide an easier-to-use user interface.

5.9.1 Interface Redirection File Contents
The Interactive Interface shown in Section 5.7.1 could be duplicated in an input file as follows. This file can be created
from the example in Section 5.8.9 (Interface File Example). The format is very important, as this file is used instead
of the user having to type all of this in. Also, since this file is simply redirected into the program, no form of comments
are allowed in it. (Note: The <ENTER> is only shown for clarity, and the (Note: ...) are not part of the file.

0<ENTER> (Note: start of Types)
float integer angle<ENTER> (Note: valid types)
float float float<ENTER> (Note: add()Types)
integer float float<ENTER>
float integer float<ENTER
integer integer integer<ENTER>
angle angle angle<ENTER>
<ENTER>
float angle<ENTER> (Note: asin() Types)
integer angle<ENTER>
<ENTER>
angle float<ENTER> (Note: sin() Types)
<ENTER>
integer<ENTER> (Note: terminal Types)
angle<ENTER>
float<ENTER>
float<ENTER>
angle<ENTER> (Note: Root return Type)
0<ENTER> (Note: start of F/TSpecs)
<ENTER> (Note: F/T_add Constraints)
<ENTER>
add asin sin 1 PI x y<ENTER>
<ENTER>
add asin sin 1 PI x y<ENTER>
<ENTER> (Note: F/T_asin Constraints)
<ENTER>
add asin sin 1 PI x y<ENTER>
<ENTER> (Note: F/T_sin Constraints)
add<ENTER>
add asin sin 1 PI x y<ENTER>
asin<ENTER> (Note: F/T_Root Constraints)
add asin sin 1 PI x y<ENTER>
0<ENTER> (Note: start of Weights)
0.25 0.25 0.5 0.2 0.2 0.3 0.4<ENTER> (Note: add[0]() Weights)
0.25 0.25 0.5 0.2 0.2 0.3 0.4<ENTER> (Note: add[1]() Weights)
0.25 0.25 0.5 0.2 0.2 0.3 0.4<ENTER> (Note: asin[0]() Weights)
0.5 0.4 0.6 0.4 0.3 0.1<ENTER> (Note: sin[0]() Weights)
1 1 1 0.2 1 1<ENTER> (Note: Root Weights)
1<ENTER> (Note: end of Weights Section. Finished, enter 1 to continue)

Note: anything after this point will not be read by the program
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5.9.2 Interface Redirection Example
Once the input file has been created, it is a simple matter to use it. If the file were called experiment.input and
the executable file is called gp then using that file would be a matter of:

gp parameters < experiment.input

This is the standard way of redirecting a file into a program in Unix and DOS, but there may be other variations
on your system. Please refer to your system documentation for further information in this area.

6 ACGP Technical Elements
Figure 10 Working envorinment for ACGP.

The working envornment for ACGP is the same as for CGP, except that the non-uniform probabilistic distribution
space is being adjusted during the run of the GP system. 

The user may or may not provide any initial stroing constraints and/or heuristics. ACGP will adjust the heuristics
(or the uniform space if no heuristics are given apriori), favoring heuristics leading to better fitness and smaller trees
(subject to parameters). 

Note that apriori strong constraints cannot be undone by ACGP. On the other hand, heuristics can be adapted, and
new strong constraints can be discovered. 

Figure 11 Main loop for ACGP2.1. 

ACGP1.1 adjusts the heuristics by observing the distribution of such local heuristics in the population. The heu-
ristics can be updated, or completely replaced by new ones. Following lilgp1.02, ACGP1.1 can run multiple popula-
tions (but not ADFs). However, only a single set of heuristics is extracted from all the populations.

The main generation loop for ACGP1.1 is presented in Figure 11. ACGP1.1 operates in iterations, where an iter-
ation is a unit learning interval. An iteration can be anywhere from one generation to many generations. When iteration
is not complete, the current loop is the same as one generation in the GP loop. When the current generation completes
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and iteration, heuristics are extracted (from the current population(s)), updated (or raplaced), and then new generation
is produced either by the same operators as during a regular generation, or by regrowing a new population
(Regrow=Y). 

Also, mutation can be redone like crossover, not explicit roulette, but one built on the fly. This way can easily use
the new heuristics, and also redo CGP2.2 (levels) without expandsing to the varioous levels but rather by comuting for
each mutation set member what is the min and max level on which this can be used. The advantage is that fewer
weights on various levels must be precomputed after each update, but the must do more on the fly? TBD once we
decide what counters to use and how.

6.1 Distribution Counters
Figure 12 The context information in the tree structure in ACGP1.1.1 (left) and ACGP2.1 (right), as expressed in 

the tree and as explored..

Figure 12illustrates the context information that is explored for the duistribution infrmation in ACGP1.1.1 and
ACGP2.1. In v1.1.1, the information consisted of the node labels (functions and terminals), and the distribution was
collected by exploring one parent-child at a time. In v2.1 the information is much richer, as explained in Section 4.4.12. 

ACGP2.1 will use a few distribution counters to collect various heuristics: on functions/terminals, on types, and
in combination.

Figure 13 Order of the heuristics.

6.1.1 First-order Heuristics on Types: Counter CntT1
The counter CntT1 collects first-order heuristics on types only. For every type available, it considers all function arities
separately. For terminals (zero arity), it simply collects the number of times this type has been used. For a given non-
zero arity, it considers all functions of this arity producing this type, counting the types used only. If there are any, it
counts the type used on each argument, separately. This is illustrated in Figure 14.
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Figure 14 Partially allocated and instantiated CntT1_czj structure. 

This counter is not very useful for typeless applications but it will be used for statistics.

6.1.2 Second-order Heuristics on Types: Counter CntT2
The counter CntT2 collects second-order heuristics on types only. For every type available, it considers all function
arities separately. For terminals (arity zero), it simply collects the number of times this type has been used. For a given
non-zero arity, it considers all cominations of types producin the given type (cobinations over all arguments). If there
are any, it counts the type used on each argument, separately. 

Figure 15 Partially allocated and instantiated CntT2_czj structure. 

This counters collects the following: . This is illustrated in Figure 15. This counter is

not used for typeless applications. Even though this coungter expresses second-order heuristics, the information
needed is contained in a single node (using the typeVec).

The index in the actual counter array is computed as follow: take the children types (left child the most signifi-
cant), read the number as a number in base NumTypes, and take the decimal equivalence. For example, for NumTypes=2
and functions of arity 3, the counter is of size 23=8. The context where the hildren are labeled (felt to right) as giving
type 0112 will be counted at index 310. The index is computed by the function int acgp_indexCntT2(arity,type-
Vec). The actual computation is helped with an array of base NumTypes multipliers allocated and initialized in
CntT2bases_czj, as illustrated in Figure 16 for the same example (0112 is 0*1+1*2+1*4

Figure 16 Auxilary CntT2bases_czj for NumTypes=2 and maximal function arity 3 in an application.
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6.1.3 First-order Heuristics on Labels Only: Counter CntL1
The counter CntL1 collects simple first-order typeless heuristics as the following distribution information:

 (equivalent to the counters in ACGP1.1.1). That is, for every function and every of its
argument it counts what labels the child. This is illustrated in Figure 17.

Figure 17 Partially allocated and instantiated CntL1_czj structure.

6.1.4 Second-order Heuristics on Labels Only: Counter CntL2
The counter CntL2 collects simple first-order typeless heuristics as the following distribution information:

. That is, for every function and every of its argument it counts what labels the child.

This is illustrated in Figure 18.
Figure 18 Partially allocated and instantiated CntL2_czj structure.

Note that this array can get long. For the 11-multiplexer problem, not will have the array of length 15, and and
or will have it of length 225, while if will have it of length 3375 (153).

Indexing is done similarly to that for the counter CntT2_czj, through the function int acgp_intexCntL2(int
arity, int *children). The children array is allocated and initialized in the acgp_count_czj() function. The
bases are precomputed in CntL2bases_czj for the largest arity and used as needed. For example, for the if function
having the three children a0 (FT index 4), if (0), d2 (9), respectively, the counter index will be 4*152+0*15+9*1=909.

6.1.5 Zero-order Combined Heuristics: Counter CntTL0
The counter CntTL0 collects simple heuristics information: . That is, for every type produced, what
functions produce it. This is illustrated in Figure 19.
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Figure 19 Partially allocated and instantiated CntTL0_czj structure. 

This counter is not very useful for typeless applications but will be used for statistics.

6.1.6 Zero-order Combined Heuristics: Counter CntLT0
The counter CntLT0 collects simple heuristics information: . That is, if a function needs to be used,
what types whould it produce (note that terminals are fixed type and thus no heuristics needed). This is illustrated in
Figure 20.

Figure 20 Partially allocated and instantiated CntLT0_czj structure. 

This counter is not used for typeless applications.

6.1.7 First-order Combined Heuristics: Counter CntLT1
Figure 21 Partially allocated and instantiated CntLT1_czj structure. 

The counter CntTL1 collects combined heuristics information, while handling one node at a time (not looking at parent-
child). The following distribution information is collected: . That is, for every function
that has to generate a specific type, this is the counter of what function instance (typeVec) is used. This is a limited-
context heuristic, but in links information among three levels: the given node, the parent who determines what type the
node has to generate, and the children, based on the instances of the function. Therefore it is very simple yet very rich
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information. This information can apparently be used to put heuristics on the different function instances.
This heuristics can be read as either:

• if a function of a given type needs to generated, what instance to use
• if a type from a given function needs to be generated, what instance to use

This counter is not used for typeless applications. It is really a zero-order heuristics yet quite rich in contents.

6.1.8 First-order Combined Heuristics: Counter CntLT2
The counter CntLT2 collects more detailed first-order heuristics as the following distribution information:

. That is, for every function that is using a specific instance,
and for every child argument, it collects the information about what function/terminal labels the child if the child is a
function, what instance of the function it is. This information is much richer. Note that for the child we collect the
instance not the type information because the type information of this child is already implied by the instance of the
parent and thus is not subject to modification. The total field is the only one used for terminals (typeVecs=NULL) and
it may be used for functions in updfating the heuristics if there is no desire to differentiate between different child’s
instances.This is illustrated in Figure 22.

This counter is not used for typeless applications.
Figure 22 Partially allocated and instantiated CntLT2_czj structure.

6.2 Using the Counters to Update Heuristics
The counters can be used directly, by modifying initialization/mutation/crossover, or by modifying the underlying
CGP2.1 mechanisms. TBD. At present, we only analyze the counters afterwards. Counters can be used directly to
affect mutation/crossover, or they can be used to modify the existing CGP2.1 weights (probably after changing the
function overloading from boolean to probabilistic instances with a roulette wheel).

6.3 New Output Files
On every ACGP run (acgp.acgp>0), the output.basename.acgp file is generated, with all the independent and
dependent acgp-paramaters, and the initial weights. The counters are computed and printed according to the
acgp.file_interval and acgp.pop_sampling parameters. Each of the eight counters is printed in a different file. More-
over, each counter may be printed into between one and four different files. The general form of a counter filename is
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output.basename.??.XXX where
• XXX is the name of the counter w/o the _czj
• ?? is of the form [g|i][b|w], with 

• g - generation data
• i - iteration data
• b - sampling of best trees
• w - statistics from the whole population

No weight modifications are printed at present as the weights are not adjusted yet. When they are, some weight
files will have to be added.

The counter files are as follow:
1. If acgp.acgp==0 then none
2. If acgp.acgp>0 then for every counter the following files (the ?? above) are produced: 

located in the following indexes in the file array for each counter:

6.4 Implementation Changes
There are new functions and data structures in cgp_czj.c, to count the distribution and print them into a file. All func-
tions and data structures have the acgp prefix. 

gp.c is modified in three ways. Communication into this file is accomplished through two new global variables
Acgp_regrow and Acgp_stop_on_term.

1. The generation loop is modified to take Acgp.stop_on_term paramater into account.
2. The lil-gp function generation_information(), called in the generation loop at the end of each loop, calls

acgp_czj() on every generation, which in turn sets the current value of Acgp_regrow, and computes and prints
all counters as needed.

3. At the end of the generation loop, reproduction is redirected to regrowing as needed according to Acgp_regrow
(see Figure 11).

Counter files generated
acgp.pop_sampling

0 1

acgp.file_interval 0 ib ib+iw

1 ib+gb ib+iw+gb+gw

File kind File array index

ib 0

iw 1

gb 2

gw 3
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Figure 23 Changes in the basic ACGP loop to accommodate expressed info. 

The data structure for the node is changed to include the floating field expressed_czj, which counts the number
of times a given node is visited during evaluation. Note that ifd the evaluation is done only once, then the field is going
to be 0 or 1. If the evaluation is done more than once (as to evaluate for different data), this will be the actual count.
How this information is utilized in counting the distribution depends on the new parameter acgp.use_expreessed.

The changes needed in the basic ACGP loop are shown in Figure 23.

7 ACGP 2.1 User’s Manual
The following are ACGP2.1 specific parameters (some are from ACGP1.1.1). They can be specified the same way as
any ligp1.02 (or CGP2.1) parameters. The following gives the parameter’s name, range, default value, and interpreta-
tion.

• acgp.use_trees_prct
(0..1]
0.1
The effective rate for distribution sampling, that is this prct of all trees (from all populations if run-
ning multiple populations) will be taken for sampling. Note that the actual number is taken by
applying the ceil() function and thus the actual number of trees may happen to be somehow larger
than predicted.

• acgp.select_all
[0,1]
1
1 - Extract acgp.use_trees_prct best (after sort) out of each population then take them all for
sampling
0 - Extract sqrt(acgp.use_trees_prct) best of each pop then resort and take again
sqrt(acgp.use_trees_prct) resulting in acgp.use_trees_prct effective rate

• acgp.extract_quality_prct
[0..1]
0.99
Two trees with fitness diff by no more than (1-acgp.extract_quality_prct) is considered same
fitness and thus compared on size

• acgp.gen_start_prct
[0..1]
0.0
Start extracting at generation acgp.gen_start_prct*MaxGen

• acgp.gen_step

Initialize P

Evaluate P

Iteration
complete?

Compute 

Update

Regrow? Regrow PReproduction

YN

YN

distribution

heuristics

reset expressed_czj member (each node) 
-acgp_reset_expressed_czj()
set expressed_czj field during evaluation 
-modify evaluate_tree_recurse()

use expressed_czj 
in acgp_count_czj()
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[1..MaxGen]
1.
After starting extracting, extract at this gen interval (this is the iteration length)

• acgp.gen_slope
[0,1,2]
1
0 - Use extracted heuristics to update the old heuristics at the constant rate of
acgp.gen_slope_prct, but if this is 0 then use constant rate of 
1 - Use extracted heuristics to update the old heuristics with rate increasing with iteration number
The heuristics formula is 
where  is the frequency of a heuristic to all heuristics of a given parent, and  is the
rate of change.

• acgp.gen_slope_prct
[0..1]
0.10
See above.

• acgp.0_threshold_prct
[0..1]
0.025
If a weight drops to weight such that weight/mutSetSize less than acgp.threshold_prct, then
drop weight to 0.

• acgp.acgp
[0,1,2]
0
0 - CGP run, no statistrics no ACGP outputs
1 - ACGP run, no regrow
2 - ACGP run, with regrow

• acgp.file_interval
[0,1]
0
0- produce the statistics and counter files at every iteration only
1- produce the statistics and counter files at every generation and iteration

• acgp.pop_sampling
[0,1]
0
0 - count from the selected best trees according to acgp.use_trees_prct and acgp.select_all
1 - count also from the whole population

• acgp.stop_on_term
[0,1]
1
0 - Continue remaining generations even on solving (term)
1 - Stop generations upon solving

• acgp.use_expressed
[0,1,2]
0
0 - collect distribution from all nodes
1 - skip over subtrees which are not expressed (not used in evaluation) and use the other subtrees
with the same weight
2 - use distribution proportional to the number of visitis in a node (equivalent to option 1 if a node
is visitied 0 or 1 times only)

If you desire to use regrowing (acgp.acgp must be 2), you must include regrow operator as one of the lilgp oper-

1 numIterations⁄

newWeight oldWeight 1 r–( ) counterRatio r⋅+=
counterRatio r
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ators, as the last one listed (the operator is defined with ACGP 1.1). If you dont want to use regrow during regular
reproduction, set its probability to a very low value.
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