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Abstract. The Self system attempts to integrate intellectual and non-intellectual
aspects of programming to create an overall experience. The language semantics,
user interface, and implementation each help create this integrated experience.
The language semantics embed the programmer in a uniform world of simple ob-
jects that can be modified without appealing to definitions of abstractions. In a
similar way, the graphical interface puts the user into a uniform world of tangible
objects that can be directly manipulated and changed without switching modes.
The implementation strives to support the world-of-objects illusion by minimiz-
ing perceptible pauses and by providing true source-level semantics without sac-
rificing performance. As a side benefit, it encourages factoring. Although we see
areas that fall short of the vision, on the whole, the language, interface, and im-
plementation conspire so that the Self programmer lives and acts in a consistent
and malleable world of objects.

1 Introduction

During the last decade, over a dozen papers published about Self have described the se-
mantics, the implementation, and the user interface. But they have not completely artic-
ulated an important part of the work: our shared vision of what programming should be.
This vision focuses on the overall experience of working with a programming system,
and is perhaps as much a feeling thing as it is an intellectual thing. This paper gives us
a chance to talk about this underlying inspiration, to review the project, and to make a
few self-reflective comments about what we might have done differently. Although the
authors have the luxury of commenting from an overview perspective, the reader should
keep in mind that the this work is the result of efforts by the many individuals who have
worked in the Self project over the years.

1.1 Motivation

Programmers are human beings, embedded in a world of sensory experience, acting and
responding to more than just rational thought. Of course to be effective, programmers
need logical language semantics, but they also need things like confidence, comfort, and
satisfaction — aspects of experience which are beyond the domain of pure logic. These



concerns have traditionally been addressed separately by putting the logic in the lan-
guage and providing for the rest of experience with the programming environment. The
Self system attempts to integrate the intellectual and experiential sides of programming.

In our vision, the Self programmer lives and acts in a consistent and malleable world,
from the concrete motor-sensory, to the abstract, intellectual levels. At the lowest, mo-
tor-sensory level of experience, objects provide the foundation for natural interaction.
Consequently, every visual element in Self, from the largest window to the smallest tri-
angle is a directly manipulable object. At the higher, semantic levels of the language,
there are many possible computational models: in order to harmonize with the sensory
level, Self models computation exclusively in terms of objects. Thus, every piece of
Self data, from the largest file to the smallest number is a directly manipulable object.
And, in order to ensure that these objects could be directly experienced and manipulat-
ed, we devised a model based on “prototypes.” Just as a button can be added to any
graphical object, so can a method be added to any individual object in the language,
without needing to refer to a class. This prototype model and the use of objects for ev-
erything requires a radically new kind of implementation. In Self, implementation, in-
terface, and language were designed to work together to create a unified programming
experience.

In the following sections we in turn review the language semantics, the user interface,
and the implementation. In each section we will try to point out where we think we suc-
ceeded and where we think we failed in being true to the vision.

2 Language Semantics

Self was initially designed by the authors at Xerox PARC [US87]. We employed a min-
imalist strategy, striving to distill an essence of object and message. Self has evolved
over the years in design and implementation at Stanford University and most recently
at Sun Microsystems Laboratories. A user interface and programming environment
built in Self are part of the system: Self today is a fairly large system, and includes a
complete programming environment and user interface framework.

A computation in Self consists solely of objects which in turn consist of slots. A slot has
a name and a value. Slot names are always strings, but slot values can be any Self object.
A slot can be marked with an asterisk to show that it designates aparent. Figure 1 illus-
trates a Self object representing a two-dimensional point withx andy slots, a parent slot
calledmyParent, and two special assignment slots,x: andy:, that are used to assign to
thex andy slots. The object’s parent has a single slot calledprint (containing a method
object).

When sending a message, if no slot name matches within the receiving object, its par-
ent’s slots are searched, and then slots in the parent’s parent, and so on. Thus our point
object can respond to the messagesx, y, x:, y:, andmyParent, plus the messageprint ,
because itinherits theprint  slot from its parent. In Self, any object can potentially be a



parent for any number of children, or it can be a child of any object. This uniform ability
of any object to participate in any role of inheritance contributes to the consistency and
malleability of Self and, we hope, contributes to the programmer’s comfort, confidence,
and satisfaction.

In addition to slots, a Self object can include code. Such objects are calledmethods;
since they do what methods in other languages do. For example, the object in theprint
slot above includes code and thus serves as a method. However in Self, any object can
be regarded as a method; a “data” object contains code that merely returns itself. This
viewpoint serves to unify computation with data access: when an object is found in a
slot as a result of a message send it isrun; data returns itself, while a method invokes
its code. Thus when theprint  message is sent to our point object, the code in the print
slot’s method will run immediately. This unification reinforces the interpretation that
the experience of the client matters, not the inner details of the object used. For exam-
ple, some soda machines dispense pre-mixed soda, while others dynamically mix syrup
and carbonated water on demand. The user does not care to become involved in the dis-
tinction, what matters is only the end product, be it soda or the result of a computation.

Of course Self is not the only language that unifies access and computation. For exam-
ple Beta [MMN93] does too. From a traditional computer science viewpoint, this uni-
fication serves to provide data abstraction; it is impossible to tell, even from within an
abstraction, whether some value is stored or computed. However when designing Self
we also sought to unify assignment and computation; this unification is slightly more
unusual. Assignment in Self is performed with assignment slots, such asx: and y:,
which contain a special method (symbolized by the arrow), that takes an argument (in
addition to the receiver) and stuffs it in either thex or y slot. This desire for access/as-
signment symmetry can be interpreted as arising from the sensory-motor level of expe-
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Figure 1. A Self point has x and y slots, with x: and y: slots con-
taining the assignment primitive for changing x and y. The slot
myParent carries a “parent” denotation (shown as an asterisk).
Parent slots are an inheritance link, indicating how message
lookup continues beyond the object’s slots. For example, this
point object will respond to a print message, because it inherits
a print slot from the parent.



rience. From the time we are children, experience and manipulation are inextricably in-
tertwined; we best experience an object when we can touch it, pick it up, turn it over,
push its buttons, or even taste it. We believe that the notion of a container is a funda-
mental intuition that humans share and that by unifying assignment and computation in
the same way as access and computation, Self allows abstraction over containerhood;
since all containers are inspected or filled by sending messages; any object may pretend
to be a container while employing a different implementation.

A contrast between Self and Beta may illustrate the role that our concern for a particular
kind of programming experience played in the language design. In Beta, data takes two
forms: values and references. Beta unifies accessing values with computation and also
unifies assignment of values with computation, but uses a different syntax for accessing
or changing references. For example, a data attribute containing a reference to a point
would be accessed by sayingpt[]-> but a method in the receiver returning a reference to
a point would be run bypt->. Giving the programmer two forms of data can be seen as
giving the programmer more tools with which to work. More tools can of course be a
good thing, but since in our opinion, the value/reference distinction does not really exist
at the sensory-motor level of experience, we chose a slightly less elaborate scheme with
a single kind of data structuring mechanism. We also believe there are advantages to
uniformity in and of itself.

The design of slots in Self has proven to be challenging because of the unified access to
state and behavior. In Self the same message can be sent to either read a data slot or run
a method in the slot. Where should the distinction be maintained? We have taken the
position that method objects are fundamentally different, in that they run non-trivial
code whereas data objects just return themselves. Still, this behavior of method objects
means that they cannot be directly manipulated because they would run. So we have had
to invent primitive objects calledmirrors as a way of indirectly mentioning methods.
Mirrors can be better justified as encapsulators of reflective operations and as relieving
each object of the burden of inheriting such behavior. But mirrors can hamper unifor-
mity; it is sometimes unclear whether a method should take a mirror as argument or the
object itself. Another approach to unifying invocation and access would be to add a bit
to a slot that would record whether or not the slot was a method or data slot. This ap-
proach has its own problems: what would it mean to put 17 into a method slot? In our
opinion, this issue is not fully resolved.

The treatment of assignment slots in Self is also a bit troublesome. A Self assignment
slot is a slot containing a special primitive (the same one for all assignment slots), which
uses thename of the slot (very odd) to find a corresponding data slotin the same object
(also odd). This treatment leads to all sorts of special rules, for instance it is illegal to
have an object contain an assignment slot without a corresponding data slot, so the code
that removes slots is riddled with extra checks. Also, this treatment fails to capture the
intuitive notion of a container. Other prototype-based languages address this issue by
having a slot-pair be an entity in the language and casting an assignable slot as such a



slot pair. Another alternative might be to make the assignment object have a slot iden-
tifying its target, so that in principle any slot could assign to any other.

Messages can have extra arguments in addition to the receiver. For example,3 + 4 sends
the message+ to the object3, with 4 as argument. In contrast to many other object-ori-
ented languages numbers are objects in Self, just as in Smalltalk. Because languages
like Smalltalk or Self do arithmetic by sending messages, programmers are free to add
new numeric data types to the language, and the new types can inherit and reuse all the
existing numeric code. Adding complex numbers or matrices to the system is straight-
forward: after defining a+ slot for matrices, the user could have the matrix freely inherit
from some slot with code that sends+. Code that sends+ would then work for matrices
as well as for integers. Self’s juxtaposition of a simple and uniform language (objects
for numbers and messages for arithmetic in this case) with a sophisticated implementa-
tion permits the programmer to inhabit a more consistent and malleable computational
universe.

There is more to be said about the language: new Self objects are made simply by copy-
ing—there are no special class objects for instantiation (see the later section entitled
Prototypes and Classes). The current implementation allows multiple inheritance,
which requires a strategy for dealing with multiple parents. It has block closure objects,
and threads. (A few constructs that would be somewhat obscure in a language like Self,
such as methods contained in the local slots of methods, are not yet supported by the
implementation.)

2.1 Discussion

Our desire to provide a certain kind of programming experience has colored Self’s
stance on some traditional issues:

Type Declarations.In order to understand the design of the Self language it helps to
examine the assumptions that underlie language design. In the beginning, there were
FORTRAN, ALGOL and Lisp. In all three of these languages the programmer only has
to say what is necessary to execute programs. Since Lisp was interpreted, no type infor-
mation was supplied at all. Since ALGOL and FORTRAN were compiled, it was nec-
essary for programmers to specify primitive type information, such as whether a vari-
able contained an integer or a float, in order for the compiler to generate the correct in-
structions. As compiled languages evolved, it was discovered that by adding more static
declarations, the compiler could sometimes create more efficient code. For example, in
PL/I procedures had to be explicitly declared to be recursive, so that the compiler could
use a faster procedure prologue for the non-recursive ones.

Programmers noticed that this static declarative information could be of great value in
making a program more understandable. Until then, the main benefit of declarations had



been to the compiler, but with Simula1 and PASCAL a movement was born; using dec-
larations both to benefit human readers and compilers.

In our opinion, this trend has been a mixed blessing, especially where object-oriented
languages are concerned. The problem is that the information a human needs to under-
stand a program, or to reason about its correctness, is not necessarily the same informa-
tion that a compiler needs to make a program run efficiently. But most languages with
declarations confuse these two issues, either limiting the efficiency gained from decla-
rations, or, more frequently hindering code reuse to such an extent that algorithms get
duplicated and type systems subverted.

Self therefore distinguishes between concrete and abstract types. Concrete types (em-
bodied bymaps) are completely hidden from the Self programmer. Maps are only visi-
ble to the implementation, where they are used as an efficiency mechanism. Abstract
types on the other hand are notions that the programmer might think about. Self has no
particular type manifestation in the language: declarative information is left to the en-
vironment. For example, one language level notion of abstract type, theclone family, is
used in the work of Agesen et. al. [APS93] in their Self type inference work. There is
no clone family object in the Self language, but such objects can be created and used by
the programming environment. In order to structure complexity and provide the freest
environment possible, we have layered the design so that the Self language proper in-
cludes only information needed to execute the program, leaving declarative information
to the environment. This design keeps the language small, simplifies the pedagogy, and
allows users to potentially extend the intensional domain of discourse.

Minimalism. Why have we tried to keep the Self language minimal? It is always tempt-
ing to add a new feature that handles some example better. Although the feature had
made it possible to directly handle some examples, the burden it imposed in all reason-
ing about programs was just too much. We abandoned it for Self 3.0. Although adding
features seems good, every new concept burdens every programmer who comes into
contact with the language.

We have learned the hard way that smaller is better and that examples can be deceptive.
Early in the evolution of Self we made three mistakes: prioritized multiple inheritance,
the sender-path tie-breaker rule, and method-holder-based privacy semantics.2 Each
was motivated by a compelling example [CUCH91]. We prioritized multiple parent
slots in order to support a mix-in style of programming. The sender-path tie-breaker rule
allows two disjoint objects to be used as parents, for example a rectangle parent and a
tree node parent for a VLSI cell object. The method-holder-based privacy semantics al-
lowed objects with the same parents to be part of the same encapsulation domain, there-
by supporting binary operations in a way that Smalltalk cannot [CUCH91].

1 SimulaTM is a trademark of a.s. Simula
2 In all fairness, the first author was across the Atlantic at the time and had nothing to do with it.

On the other hand, if he had not wandered off maybe these mistakes could have been avoided.



But each feature also caused us no end of confusion. The prioritization of multiple par-
ents implied that Self’s “resend” (call-next-method) lookup had to be prepared to back-
up down parent links in order to follow lower-priority paths. The resultant semantics
took five pages to write down, but we persevered. After a year’s experience with the fea-
tures, we found that each of the members of the Self group had wasted no small amount
of time chasing “compiler bugs” that were merely unforeseen consequences of these
features. It became clear that the language had strayed from its original path.

We now believe that when features, rules, or elaborations are motivated by particular
examples, it is a good bet that their addition will be a mistake. The second author once
coined the term “architect’s trap” for something similar in the field of computer archi-
tecture; this phenomenon might be called “the language designer’s trap.”

If examples cannot be trusted, what do we think should motivate the language designer?
Consistency and malleability. When there is only one way of doing things, it is easier
to modify and reuse code. When code is reused, programs are easier to change and most
importantly, shrink. When a program shrinks its construction and maintenance requires
fewer people which allows for more opportunities for reuse to be found. Consistency
leads to reuse, reuse leads to conciseness, conciseness leads to understanding. That is
why we feel that it is hard to justify any type system that impedes reusability; the result-
ant duplication leads to a bigger program that is then harder to understand and to get
right. Such type systems can be self-defeating.1

1 However, by emphasizing the ability to express intuitive relationships, such as covariant spe-
cialization, over the ability to do all checking statically, it is possible to do a better job.
See [MMM90].

More examples with direct solutions

more fe
atures

Figure 2. As more features are embedded in the language, the programmer
gets to do more things immediately. But complexity grows with each feature:
how the fundamental language elements interact with each other must be de-
fined, so complexity growth can be combinatorial. Such complexity makes the
basic language harder to learn, and can make it harder to use by forcing the
programmer to make a choice among implementation options, a choice which
may have to be revisited later.

Greater learning time

More policy decisions
to make and revisit



Prototypes and Classes.There are now several fairly mature object-oriented languag-
es based on prototypes. (For overviews see [Blas94], [DMC92], and [SLS94].) These
languages differ somewhat in their treatment of semantic issues like privacy, copying,
and the role of inheritance. (One notable system, Kevo [Tai93a], [Tai92], [Tai93] does
not have delegation or inheritance at all.) All these languages have a model in which an
object is in a important sense self-contained. Prototypes are often presented as an alter-
native to class-based language designs, so the subject of prototypes vs. classes can serve
as point of (usually good natured) debate.

However, depending on how one defines “class,” one may or may not think that classes
are already present in a prototype based system. Some (e.g. [Blas94]) see a Self proto-
type as playing the role of class, since it determines the structure of its copies. Others
note that much of the current Self system is organized in a particular way, using what
we call “traits” objects in many places to provide common state and behavior for shar-
ing among children. Such sharing is reminiscent of that provided by a class. However,
classes normally also provide the description of an instance’s implementation, and a
“new” method for instantiation, neither of which are found in a traits object.

In a class-based system, any change (such as a new instance variable) to a class will af-
fect new instances of a subclass. In Self, a change to a prototype (such as a new slot)
will not affect anything other than the prototype itself (and its subsequent direct cop-
ies).1 So we have implemented a “copy-down” mechanism in the environment to share
implementation information. It allows the programmer to add and remove slots to an
entire hierarchy of prototypes in a single operation. Functionality that is provided at the
language level in class-based systems has risen to the programming environment level
in Self. In general, the simple object model in Self means that some functionality omit-
ted from the language may go back into the environment. Because the environment is
built out of Self objects, the copy-down policy can be changed by the programmer. But
such flexibility comes with a price. Now, there are two interfaces for adding slots to ob-
jects, the simple language level and the copying-down Self-object level. This loss of
uniformity could be a source of confusion when writing a program that needs to add
slots to objects. Only time will tell if the flexibility is worth the complication.

A brief examination of the emulation of classes in Self will serve to illuminate both the
nature of a prototype-based object model and the trade-off between implementing con-
cepts in the language versus in the environment. In order to make a Self shared parent
look more like a class, one could create a “new” method in the shared parent. This meth-
od could make a copy of some internal reference to a prototype, and so would appear to
be an instantiation device. Figure 3 suggests how one might start to make a Smalltalk
class out of Self objects. Mario Wolczko has built a more complete implementation of
this, and has shown [Wol95] that it works quite well: he can read in Smalltalk source
code and execute it as a Self program. There are certain restrictions on the Smalltalk

1 Self prototypes are not really special objects, they are distinguished only by the fact that, by
convention, they are copied. Any copy of the prototype would serve as a prototype equally
well. Some other prototype-based systems take a different approach.



source, but thanks to Self’s implementation technology, once the code adaptively opti-
mizes, the Self version of Smalltalk code will generally run faster than the Smalltalk
version.

Do prototype-based systems like Self have classes? The answer would seem to be that
if your definition of class is not satisfied by the existing language elements, you can
probably build something quite easily that would make you happy. (It would be difficult
to do this kind of trick in a prototype-based language that did not have an inheritance
mechanism.) Of course, almost any language can emulate any other, but in this case the
classes are built directly out of the prototype-based objects so directly that the classes
constructed out of Self objects run faster that those built-in to Smalltalk. General meta-
object issues in prototype-based languages are tackled by the Moostrap system
[Mul95].

The use of traits might be seen as a carryover from the Self group’s Smalltalk experi-
ence. Interestingly, it is likely that our old habits might not have done Self justice (as
observed in [DMC92].) There are many other ways to organize Self objects other than
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Figure 3. This figure suggests how Self objects might be composed to form
Smalltalk-like class structures as demonstrated more completely by Wolczko
[Wol95]]. He shows that, with some caveats, Smalltalk code can be read into
a Self system, parsed into Self objects, then executed with significant perfor-
mance benefits, thanks to the Self’s dynamically optimizing virtual machine.
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by prototypes inheriting from a chain of traits parents, and many of these ways avoid a
problem with the traits organization: a traits object appears to be an object but in fact
cannot respond to most of its messages. For example the point traits object lacks x and
y slots and so cannot respond to printString, since its printString slot contains a method
intended to be shared by point objects. We probably would have done better to put more
effort into exploring other organizations. When investigating a new language, your old
habits can lead you astray.

3 The User Interface and Programming Environment

Self is an unusually pure object-oriented language, because it uses objects and messages
to achieve the effects of flow control, variable scoping, and primitive data types. This
maniacal devotion to the object-message paradigm is intended to match a devotion to a
user interface based on concrete, direct manipulation of uniform graphical objects. By
matching the language to the user interface, we hope to create an experience of pro-
gramming that can be learned more easily, and can be performed with less cognitive
overhead.

The notion of direct manipulation has been around for many years now, and it is inter-
esting to note that some of the earlier prototype-based systems were visual program-
ming environments [BD81], [Smi87]. The current Self user interface [SMU95], [MS95]
enhances the sense of direct manipulation by employing two principles we callstruc-
tural reification, and live editing. We will define these principles, and show with an ex-
ample how the interface brings the feeling of direct object experience to the task of cre-
ating objects and assembling applications.

3.1 Structural reification

The fundamental kind of display object in Self is called a “morph,” a term borrowed
from Greek meaning essentially “thing.” Self provides a hierarchy of morphs. The root
of the hierarchy is embodied in the prototypical morph, which appears as a kind of gold-
en colored rectangle. Other object systems might choose to make the root of the graph-
ical hierarchy an abstract class with no instances. But prototype systems usually provide
generic examples of abstractions. This is an important part of the structural reification
principle: there are no invisible display objects. Any descendant of the root morph (or
any other morph for that matter) is guaranteed to be a fully functional graphical entity.
It will inherit methods for displaying and responding to input events that enable it to be
directly manipulated.

In keeping with the principle of structural reification, any morph can have “submorphs”
attached to it. A submorphs acts as though it is glued to the surface of its hosting morph.
Composite graphical structure typical of direct manipulation interfaces arises through
the morph-submorph hierarchy. Again, many systems provide compositing with special
“group” objects which are normally invisible. But because we want things to feel very



solid and direct, we chose to follow a simple metaphor of sticking morphs together as
though glued to each other.

A final part of structural reification arises from the approach to submorph layout.
Graphical user interfaces often require that subparts be lined up in a column or row.
Self’s graphical elements are organized in space by “layout” objects that force their sub-
morphs to line up as rows or columns. John Maloney [MS95] has shown how to create
efficient “row and column morphs” as children of the generic morph. These objects are
first class, tangible elements in the interface. They embody their layout policy as visible
parts of the submorph hierarchy, so the user need only be able to access the submorphs
in a structure in order to inspect or change the layout in some way. A possible price of
this uniformity is paid by a user who does not wish to see the layout mechanism, but is
confronted with it anyway.

An example in section 3.3 will illustrate how structural reification assures that any mor-
ph can be seen and can be grabbed, moved and inspected, and assures that graphical
composition and layout constraints are physically present in the interface. Structural re-
ification is an important part of making programming feel more tangible and direct.

3.2 Live Editing

Live editing simply means that at any time, an object can be directly changed by the
user. Any interactive system that allows arbitrary runtime changes to its objects has a
degree of support for live editing. But we believe Self provides an unusually direct in-
terface to such live changes. The key to live editing is provided by Self’s “meta menu,”
a menu that can pop up when the user holds the third mouse button while pointing to a
morph. The meta menu contains items such as “resize,” dismiss,” and “change color”
which allow the user to edit the object directly. There are also menu elements that en-
able the user to “embed” the morph into the submorph structure of a morph behind it,
and menu elements that give access to the submorph hierarchy at any point on the
screen.

The “outliner” menu item creates a language-level view of the morph under the mouse1.
This view shows all of the slots in an object, and provides a full set of editing function-
ality. With an outliner you can add or remove slots, rename them, or edit their contents.
Code for a method in a slot can be textually edited: outliners are important tools for pro-
grammers. Access to the outliner through the meta menu makes it possible to investi-
gate the language-level object behind any graphical object on the screen.

The outliner supports the live editing principle by letting the user manipulate and edit
slots, even while an object is “in use.” The example below illustrates how a slot can be
“carried” from one object to another, interactively modifying their language level struc-
ture.

1 Lars Bak designed the outliner framework for Self.



Popping up the meta menu is the prototypical morph’s response to the third mouse but-
ton click. All morphs inherit this behavior, even elements of the interface like outliners
and pop-up menus themselves. But wait! Pop-up menus are impossible to click on: you
find them under your mouse only when a mouse button is already down. To release the
button in preparation for the third button click causes the pop-up to frustratingly disap-
pear. Consequently, we provide a “pin down” button, which, when selected, causes the
menu to become a normal, more permanent display object. The mechanism is not new,
but providing it in Self enables the menu to be interactively pulled apart or otherwise
modified by the user or programmer.

Live editing is partly a result of having an interactive system, but is enhanced by fea-
tures in the user interface. This principle reinforces the feel that the programmer is
working directly with concrete objects. The following example will clarify how this
principle and the structural reification principle help give the programmer a feeling of
a working in a uniform world of accessible, tangible objects.

3.3 Example of Direct Application Construction

Suppose the programmer (or motivated user) wishes to expand an ideal gas simulation,
extending the functionality and adding user interface controls. The simulation starts
simply as a box containing “atoms” which are bouncing around inside. Using the third
mouse button, the user can invoke the meta menu, and select “outliner” to get the Self-
level representation of the object (Figure 4). The outliner enables arbitrary language-
level changes to the ideal gas simulation.

Figure 4. In a Self window,
the user pops up the meta
menu on the ideal gas sim-
ulation (a). Selecting “out-
liner” gives the Self-level
representation to the user,
which can be carried and
placed as needed (b). (The
italic items at the bottom of
the outliner represent slot
categories that may be ex-
panded to view the slots.
Unlike slots, categories
have no language level se-
mantics and are essential-
ly a user interface conve-
nience.)

(a)

(b)



With the outliner, the user can start to create some controls right away. In the outliner,
there are slots labeled “start” and “stop.” These slots can be converted into user inter-
face buttons by selecting from the middle-mouse-button pop-up menu on the slot
(Figure 5). Pressing these buttons starts and stops the bouncing atoms in the simulation.
This is an example of live editing at work: in just a few gestures, the programmer has
gone through the outliner to create interface elements while the simulation continues to
run.

The programmer may wish to create several such buttons, and arrange them in a row.
The programmer selects “row morph” from a palette: when the buttons are embedded
into the row, they immediately snap into position. Once the row of buttons is created,
the programmer wishes to align the row below the gas tank. Again, the programmer can
create a column frame: when the gas tank and the button row are embedded into the col-
umn frame, they line up one below the next (Figure 6)

Figure 5. The middle mouse button pop up menu on the “stop” slot (a) enables the
user to create a button for immediate use in the user interface (b). This button will be
embedded in a row morph, so that it lines up horizontally.

(a)

(b)



Figure 6 also illustrates how composite graphical effects are achieved through the mor-
ph-submorph hierarchy. The interface employs morphs down to quite a low level. The
labels on buttons, for example, are themselves first class morphs.

The uniformity of having “morphs all the way down” further reinforces the feel of
working with concrete objects. For example, the user may wish to replace the textual
label with an icon. The user can begin this task by pointing to the label and invoking the
meta menu. There is a menu item labeled “submorphs” which allows the user to select
which morph in the collection under the mouse he wishes to denote (see Figure 7). The
user can remove the label directly from the button’s surface. In a similar way, the user
can select one of the atoms in the gas tank and duplicate it. The new atom will serve as
the icon replacing the textual label. Structural reification is at play here, making display
objects accessible for direct and immediate modification.

Figure 6. Composite graphical effects are achieved by embedding: any kind of
morph can be embedded in any other kind of morph. The ideal gas simulation
at left is a compound morph whose embedding relationships are shown at right.



1

Figure 7. The user wishes to
remove the label from the
surface of a button. In this
series of operations, the
user starts by pointing to the
label, selects “submorphs”
from the meta menu, and se-
lects the label from the re-
sulting menu list. A menu of
options is presented, from
which the user selects “yank
it out”. The button, which
wraps tightly around its sub-
morphs, shrinks down to a
minimum size when it has no
submorphs.
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As mentioned above, all the elements of the interface such as pop-up menus and dia-
logue boxes are available for reuse. As an example, the programmer may want the gas
tank in the simulation to be “resizable” by the simulation user. The programmer can cre-
ate a resize button for the gas tank simply by “pinning down” the meta menu and re-
moving the resize button from the menu, as illustrated in Figure 8. This button can then
be embedded into the row of controls along with the other buttons.

Figure 9 illustrates how the programmer can modify the behavior of an individual atom
to reveal its energy based upon color. A morph has a slot called “rawColor” that nor-
mally contains a “paint” object: in this example the programmer replaces that object
with a method, so that the paint will be computed based upon energy level. When the
change is accepted, the modified slot immediately takes effect. In Figure 10, the pro-
grammer is shown copying the slot into the atom’s parent object, so that it can be widely
shared with other atoms. Of all atoms have a rawColor slot that overrides this slot in the
parent. The programmer might at this point remove the rawColor slot from the proto-
typical atom, so that all new atoms will have this energy-based color.

Figure 8. The environment itself is available for reuse. Here the user has created
the menu of operations for the gas tank, which is now a submorph of the surrounding
frame. He has “pinned down” this menu, by pressing the button at the top of the
menu. He can then take the menu apart into constituent buttons: here the is gets the
resize button which is then incorporated into the simulation.
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Figure 9. The user has selected one atom on which to experiment. The user
changes the “rawColor” slot from a computed to a stored value by editing direct-
ly in the atom’s outliner.

Figure 10. The user copies the modified rawColor slot as a first step in getting
the computed method of coloring more widely shared. Because slots can be
moved about readily, restructuring changes are relatively light weight, enhancing
the sense of flexibility.



Figure 11 shows the completed application. All the atoms now reveal their energy as
they move, and controls for running the simulation appear in a row across the bottom
of the object. The programmer has invoked a meta-menu item “move to own window”
that wraps the application in its own window-system frame.

It is important to note that during this whole process, the simulation could be left run-
ning — there was no fundamental need to enter an “edit” mode, or even stop the atoms
from bouncing around. The live editing principle makes the system feel responsive, and
is reminiscent of the physical world’s concrete presence. Structural reification means
that the parts of the interface are visible and accessible for direct modification.

3.4 Issues

While the principles of live editing and structural reification help create the sense of
working within a world of tangible malleable objects, we could imagine going further.
Here we discuss some of the things that interfere with full realization of our goals.

Multiple views: The very existence of the outliner as a separate view weakens the
sense of directness that we are after. After all, when I want to add a slot to one of the
simulated atoms, I must work on a different display object, the atom’s outliner. We have
never had the courage or time to go after some of the wild ideas that would enable uni-
fication of any morph with its outliner. Ironically, Self’s first interface, Seity, probably
did better on this issue [Cha95], [CUS95].

Self’s programming environment enforces the constraint that there only be one outliner
on the screen at a time for a given object. If the user asks to see some object when its

Figure 11. The completed application. The user has invoked a color changing
tool that unifies colors across most submorphs, and has invoked the meta menu
item “move to own window.”



outliner is already on the screen, the outliner will do an animated slide over to the mouse
cursor. This constraint encourages identification between the object and its outliner in
the programmer’s mind. But as we mention above, particularly for morph objects, the
identification does not always hold.

Because there is a difference between outliners and the objects they represent, there is
a fundamental dichotomy in the system that interferes with the direct object experience
goal. Is the programmer to believe that the outliner for some list object really is the list?
If so, does the list have a graphical appearance as an intrinsic part of itself? Does the list
have an intrinsic display location and a color? We have chosen the easy answer, “no.”
The object that represents the list to the programmer is not the same as the actual Self
list object. Once we take this easy road, it is fundamentally impossible to always main-
tain the impression that the objects on the screen actually are the Self objects. Unfortu-
nately, it is often clear that outliners are just display stand-ins for the real, invisible Self
object, buried somewhere in the computer.

Text and object: There is a fundamental clash between the use of text and the use of
direct manipulation. A word inherently denotes something, an object does not necessar-
ily denote anything. That is, when you see the word “cow,” an image comes to mind. It
is in fact difficult to avoid the image, that is the way words are supposed to work. They
stand for things. However, when you manipulate a pencil, what comes to mind? It de-
pends much more on who you are, what the context is, and so on. In other words, a pen-
cil does not by itself denote anything. Consequently, textual notation and object manip-
ulation are fundamentally from two different worlds. The pencil and the word denoting
pencil are different entities.

Text is used quite a bit in Self, and its denotational character weakens the sense of direct
encounter with objects. For example, many tools in the user interface employ a “print-
String” to denote an object. The programmer working with one of these tools might en-
counter the text “list (3, 7, 9).” The programmer might know that this denotes an object
which could be viewed “directly” with an outliner. But why bother? The textual string
often says all he needs to know. The programmer moves on, satisfied perhaps, yet not
particularly feeling like he has encountered the list itself. The mind set in a denotational
world is different than that in a direct object world, and use of text creates a different
kind of experience.

Issues of use and mention in direct manipulation interfaces are discussed further in
[SUC92].

3.5 Summary

The Self user interface helps the programmer feel that he or she is directly experiencing
tangible objects. Two design principles help achieve this feeling. First,structural reifi-
cation, assures that the graphical relationships at play in a particular arrangement of
submorphs is manifest directly in display objects on the screen. Second,live editing



means that there is no need for a course grained “edit mode;” rather, objects are always
available for immediate and direct editing. The use of textual names for objects, and the
distinction between an object and its representation are two problems that weaken the
experience of directly working with objects. But on balance, we feel that the Self user
interface successfully presents the illusion of being a world of readily modified, physi-
cally present objects.

4 Implementing Self

The implementation of a language is usually approached from a mathematical, or mech-
anistic viewpoint: what is desired is the creation of a program that interprets programs
in another language (be the created program a compiler or interpreter). On the other
hand, we have taken the view that the goal of the implementation is to fool the user into
believing in the reality of the language. Even though Self objects have no physical ex-
istence, and there is no machine capable of executing Self methods, the implementation
must strive to convince the user otherwise. That is why, despite all the tricks, the pro-
grammer can always debug at the source level, seeing all variables and single stepping,
and can always change any method, even inlined ones, with no interference from the
implementation.

4.1 Transparent Efficiency

The implementation techniques for Self have been presented previously so we will only
summarize the briefly here. (See [Hol94], [HU94a], [HCU92], [HCU91], [Cha92],
[CU91], [CU90], [CUL89], and [USCH92] for more details.)

Self presented large efficiency challenge because its pure semantics implied that every
access, assignment, arithmetic operation and control structure had to be performed by
sending a message. Worse yet, the Self user interface’s uncompromising stance on
structural reification placed further demands on efficiency: everything on the screen
down to the smallest triangle is implemented by its own separate object, each with its
own redraw and active layout behavior. At the same time, in order to produce the expe-
rience of concrete objects, the system had to be as responsive as an interpreter. Self’s
implementors were confronted with a fundamental problem: to be responsive, the com-
piler could not afford to spend time on the elaborate optimizations needed for the lan-
guage, no matter how effective they might be. Caught between Scylla and Charybdis,
Self needed something completely different. Instead of relying on a single compiler for
both speed and cleverness, Self adopted a hybrid system of two compilers: one fast, the
other clever. Instead of always optimizing everything, type feedback permits the system
to adaptively optimize code without introducing long pauses.

Figure 12 shows an overview of the compilation process of the system. The first time
that a method is invoked, the virtual machine uses dynamic compilation to create an “in-
strumented” version of the method that counts its invocations and the types of the re-
ceivers at each call site. When the invocation counter crosses some threshold, the opti-



mizing compiler is automatically invoked and is guided by the counters at the call sites.
In this way, Self feeds type information back to the compiler to adaptively optimize
code.

Some language implementations force the programmer to choose between interpreta-
tion and compilation, or between different modes of compilation. Placing this burden
of choice upon the programmer’s shoulders can only weaken his confidence in the re-
ality of Self, and force him to consider the difference between the program as written
and what really runs. Although Self employs two compilers and a myriad of optimiza-
tions, the programmer never chooses nor even knows which have been employed on his
code.

Results on two medium-size cross-language benchmarks (Richards and DeltaBlue) sug-
gest that Self runs 2 to 3 times faster than ParcPlace Smalltalk-801, 2.6 times faster than
Sun CommonLisp 4.0™ using full optimization, and only 2.3 times slower than opti-
mized C++ [HU94a]. Of course, these Smalltalk and Lisp implementations may not in-
clude aggressively-optimized compilers, but the C++ language has semantics that make
many more concessions to efficiency over purity, simplicity, and safety.

Most implementations strive for efficiency and employ optimizations that show through
to the programmer. Tail recursion elimination, for example, optimizes methods that it-
erate by calling themselves at their ends, but makes it impossible to show a meaningful
stack trace. This destruction of information would show through to the user, who might
need to see the missing stack frames in order to debug her program. So, Self does not
optimize tail-recursion. Instead, endless loops are built in as a primitive operation.
There are other optimizations left undone in Self, see [Hol94] for a list.

4.2 Responsiveness

Many systems impose long or unpredictable pauses upon their users. But, a pause in the
middle of a user task such as the addition of a slot to an object could ruin the experience
of a consistent world. Such pauses, by their very existence, alert users that some mis-
chief is afoot. If the program (be it Self or any other language) were the reality, there
would be no pauses upon changing it. Since we believe that such pauses can destroy the
fragile illusion of reality, we have striven to reduce them in the Self implementation. In

1 Smalltalk-80TM is a trademark of ParcPlace Systems.
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fact, pauses for compilation were a serious problem in early versions of Self, and in-
spired an effort to speed up the compiler. Now, any method can be changed in a second
or two. Our ultimate goal is the elimination of perceptible pauses.

In [HU94b], Hölzle and Ungar measured the compilation pauses occurring during a 50-
minute session of the SELF 3.0 user interface1 [Cha95] [CUS95]. Their analysis
grouped individual pauses into clusters that would be perceived as pauses by the users.
The results indicated that there were few intrusive clustered pauses; on a current-gen-
eration workstation, only 13 pauses would exceed 0.4 seconds, and on a next-generation
machine, none would exceed 0.3 seconds (see Figure 13).

Clustering pauses made an order-of-magnitude difference, and reporting individual
pauses would have resulted in a distorted, overly optimistic characterization. The idea
of pause clustering is one example of how our vision of providing a particular kind of
experience to the programmer affects the standards that must be used to evaluate the
system.

4.3 Malleability
By now, it should be clear to the reader that our philosophy of implementation as de-
ception places additional burdens on the implementation, such as avoiding inconsistent
behavior or unexplainable pauses. What may come as a surprise, though is that a re-
quirement for malleability arises as a logical consequence of this unusual philosophy.
For example, in both Smalltalk and Self, the if-then-else control structure is realized by
sending a message “ifTrue:IfFalse:” to a boolean object (two arguments are included, a
block to execute for true, and another for false). Each boolean simply implements this

1 The Self 4.0 user interface described in section 3 places more demands on the imple-
mentation and its pause behavior is not as good as these measurements suggest.

Figure 13. Compilation pauses (from [HU94b]).
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message with a message that executes the appropriate block; true’s ifTrue:IfFalse:
method runs the true block and false’s runs the false block. If Self or Smalltalk objects
are real, if they directly and faithfully execute, if the user is in control, then the user
should be able to change these methods and observe the results. But in Smalltalk, extra
performance is obtained by short-circuiting this method in the implementation [GR83]
and though he may change the method, the programmer cannot alter its behavior. This
failure of malleability cannot help but raise disturbing questions and insecurities for the
programmer. That is why Self does not short-circuit this or other such methods, even
though providing such malleability without an efficiency loss extracts its cost from the
implementation.1

4.4 Encouraging Factoring and Extensible Control
Our non-traditional approach has led to techniques that provide a very traditional ben-
efit: factoring is free. Suppose two methods in the same object contain several lines in
common. By moving the common lines into a new method and sharing the method in
both callers, the programmer can centralize them and make the program easier to
change. Most implementations of object-oriented programming languages would slow
down the program with an additional procedure call, providing a strong disincentive to
the programmer for factoring small operations. In C++, for example the programmer
must either ask explicitly for inlining (and give up virtual semantics) or pay the price of
a many-statement overhead. Since Self relies on automatic inlining, no such price is
paid. Consequently Self programmers feel much freer to factor programs, and the sys-
tem is written in an unusually well-factored style. For example, a do-while loop is im-
plemented with many levels of message passing before bottoming out in primitives. We
believe that the performance characteristics of Self’s implementation techniques en-
courage programmers to write programs that are easier to maintain.

In addition to free factoring, the Self implementation makes user-defined control struc-
tures as efficient as the built-in ones. Unlike for Smalltalk, there is no disincentive for
the programmer to use a block; the implementation in most cases can inline it away.
Since we believe that control abstraction is necessary for real data abstraction, making
control abstraction free can help encourage programmers to write better programs. We
strongly believe that in all languages with user-extensible control, such as Smalltalk and
Beta, much benefit could be realized from adopting implementation techniques that put
the user-defined control structures on the same footing as the system-defined ones.

4.5 Open Issues

Although the current Self system is in daily use by a number of people, several concerns
remain about its implementation.

Overcustomization.The Self compiler creates another copy of a method for each kind
of object that inherits it. Sometimes, the method is so trivial that the copies waste code
space and compiler time for no good reason.

1 In fact, at first the second author thought the cost would be too great. But Craig Chambers’ com-
piler convinced him otherwise.



Memory Footprint. Because enough information is preserved to maintain source-level
semantics, Self takes more space than other systems. Self 4.0 barely fits in a SPARCs-
tation1 with 32 Mb of real memory. Although we believe that programming time is
more precious than memory cost, this resource requirement puts Self out of reach of
many current users.

Real-Time Operation.Although much progress has been made in the elimination of
perceptible pauses, the system still feels like it “warms up” when running the Self 4.0
environment. Hard real-time operation is not possible with today’s system.

User Control. Within the Self group, a debate rages over how much control a user
should have over the optimization process. On one hand, users want to be able to tell
the system how much, where, and when to optimize. On the other hand, the effort to add
this ability might be better spent doing a better job automatically, and giving users this
control could distract them from their own tasks and destroy the fragile illusion of Self’s
reality. So far, we have kept the control over optimization entirely within the virtual ma-
chine, as an experiment in the philosophy of implementation as deception.

4.6 Summary
Confidence, comfort, satisfaction—what do these desires imply for implementation
techniques? They rarely show up as topics in compiler papers, yet we believe that these
goals have exerted a profound influence over Self’s implementors.

5 Conclusions

The Self language semantics, implementation, and user interface have been guided by
the goal of generating a particular kind of experience for the user of the system. Pro-
grammers directly work in a uniform world of malleable objects in a very immediate
and direct fashion. Self moves towards giving objects a kind of tangible reality.

The language helps give rise to this experience by its use of prototypes, which provide
a copy-and-directly-modify mechanism for changes. Self’s treatment of slots with its
symmetry for assignment and access reflect the deep connection between perception
and manipulation at the sensory-motor level, while also enabling objects to reimple-
ment state as behavior and reflecting an intuition about how objects are behaviorally
perceived in the real world.

Self’s design departs significantly from other object-oriented languages by separating
information needed to run the program from information about the programmer’s inten-
tions. It distinguishes abstract types, used for the programmers understanding and rea-
soning about correctness, from concrete types, used to run and optimize the program.
The former is left to the environment, the latter is left to the implementation. In our

1 SPARCstationTM is a trademark of SPARC International, licensed exclusively to Sun Micro-
systems Inc.



opinion, this approach avoids a number of undesirable consequences that often follow
from attempts to integrate these two forms of information.

Finally, in designing Self, we have learned one lesson by making mistakes: examples
can persuade the designer to include additional features which later turn out to produce
incomprehensible behavior in unforeseen circumstances. This might be called “the lan-
guage designer’s trap.” Minimalism, simplicity and consistency are better guides. They
benefit every programmer, not just the ones who need advanced features. We suspect
that many of today’s object-oriented languages could profit by dropping features.

The Self user interface and programming environment provides a direct object experi-
ence for creating objects and assembling applications by adhering to two principals:
Structure reification makes the graphical containment structure and layout rules them-
selves appear as graphical objects and assures that any graphical object can be manip-
ulated, displayed, connected to other objects, or customized.Live editing ensures that
any object may be changed at any time without halting activities. A simple gesture takes
the user from any graphical object to its programming-language-level counterpart, just
as real-world objects can be taken apart. Consequently, programmers need not pore
through long object libraries to find out where to start, but can simply find some graph-
ical widget in the environment, like a button in a menu, that is similar to what they want,
and proceed to dissect, inspect, modify and reassemble it. At no time must they retreat
from a concrete object to some definition of an abstraction.

Two problems in the user interface interfere with achieving our goal. The existence of
multiple views for a graphical object and its Self-level outliner dilutes the experience
and these views should be merged. The duality between text and object goes deeper and
does not readily present a solution.

The consistency and purity of the Self language together with the ubiquitous use of ob-
jects and live layout in the interface place enormous demands on the Self implementa-
tion, but more interestingly, the desire to create a particular kind of programming expe-
rience imposes its own unique requirements on the implementation. Thus, the imple-
mentation foregoes optimizations that cannot be hidden such as tail-recursion
elimination. It also supports full source-level debugging, single stepping, and allows the
programmer to change any method, even basic ones such as addition and if-then-else,
at any time. Since a long pause for compilation would alert the programmer to the ex-
istence of a lower level of reality, the implementation works hard to avoid such pauses.
We view the implementation not as an interpreter of programs, but rather as a creator of
the illusion that the Self objects are real.

Along the way Self’s implementation techniques of adaptive recompilation and type-
feedback achieve some traditionally-important but rarely achieved goals as well: the
elimination of run-time penalty for factoring and for user-defined control structures. A
programmer may chop up a method as finely as desired without slowing it down, and
may introduce new abstractions that combine control and data without paying a run-



time price. These characteristics encourage the create of programmers that are smaller
and more malleable.

When all is said and done though, this paper can only suggest, tease, or maybe hint at
what it is like to create with Self. In order to most fully appreciate the experience of
interacting with a lively, responsive world of objects, effortlessly diving in to change
them and create more, freely mixing data and programs, and only getting coffee when
you are tired instead of when you change your program, you will have to obtain the
Self 4.0 public release and try it out for yourself. May your journey be fruitful.
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