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PREFACE

This book is intended as an upper level undergraduate or introductory grad-
uate textbook in statistical thinking with a likelihood emphasis for students
with a good knowledge of calculus and the ability to think abstractly. By
“statistical thinking” is meant a focus on ideas that statisticians care about
as opposed to technical details of how to put those ideas into practice. By
“likelihood emphasis” is meant that the likelihood function and likelihood
principle are unifying ideas throughout the text. Another unusual aspect is
the use of statistical software as a pedagogical tool. That is, instead of view-
ing the computer merely as a convenient and accurate calculating device, we
use computer calculation and simulation as another way of explaining and
helping readers understand the underlying concepts.

Our software of choice is R. R and accompanying manuals are available for
free download from http://www.r-project.org. You may wish to download
An Introduction to R to keep as a reference. It is highly recommended
that you try all the examples in R. They will help you understand concepts
give you a little programming experience, and give you facility with a very
flexible statistical software package. And don’t just try the examples as
written. Vary them a little; play around with them; experiment. You won’t
hurt anything and you’ll learn a lot.

xiil
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CHAPTER 1

PROBABILITY

1.1 Basic Probability

Let X be a set and F a collection of subsets of X. A probability measure,
or just a probability, on (X, F) is a function p : F — [0,1]. In other words,
to every set in JF, p assigns a probability between 0 and 1. We call p a
set function because its domain is a collection of sets. But not just any set
function will do. To be a probability p must satisfy

1. p(0) =0 (@ is the empty set.),
2. u(X) =1, and
3. if A; and A, are disjoint then p(A; U Ag) = p(Ar) + p(A2).

One can show that property 3 holds for any finite collection of disjoint sets,
not just two; see Exercise 1. It is common practice, which we adopt in
this text, to assume more — that property 3 also holds for any countable
collection of disjoint sets.

When X is a finite or countably infinite set (usually integers) then p is
said to be a discrete probability. When X is an interval, either finite or
infinite, then p is said to be a continuous probability. In the discrete case,
F usually contains all possible subsets of X. But in the continuous case,
technical complications prohibit F from containing all possible subsets of X'.
See Casella and Berger [2002] or Schervish [1995] for details. In this text we
deemphasize the role of F and speak of probability measures on X without
mentioning F.
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In practical examples X is the set of outcomes of an “experiment” and
i is determined by experience, logic or judgement. For example, consider
rolling a six-sided die. The set of outcomes is {1,2,3,4,5,6} so we would
assign X = {1,2,3,4,5,6}. If we believe the die to be fair then we would
also assign p({1}) = u({2}) = --- = pu({6}) = 1/6. The laws of probability
then imply various other values such as

n({1,2}) =1/3
n({2,4,6}) =1/2
etc.

Often we omit the braces and write 1(2), u(5), etc. Setting u(7) = 1/6 is not
automatic simply because a die has six faces. We set u(i) = 1/6 because we
believe the die to be fair.

We usually use the word “probability” or the symbol P in place of u. For
example, we would use the following phrases interchangeably:

e The probability that the die lands 1
e P(1)

e P[the die lands 1]

o u({1})

We also use the word distribution in place of probability measure.
The next example illustrates how probabilities of complicated events can
be calculated from probabilities of simple events.

Example 1.1 (The Game of Craps)
Craps is a gambling game played with two dice. Here are the rules, as explained
on the website www.online-craps-gambling.com/craps-rules.html.

For the dice thrower (shooter) the object of the game is to throw
a 7 or an 11 on the first roll (a win) and avoid throwing a 2, 3 or 12
(a loss). If none of these numbers (2, 3, 7, 11 or 12) is thrown on
the first throw (the Come-out roll) then a Point is established (the
point is the number rolled) against which the shooter plays. The
shooter continues to throw until one of two numbers is thrown, the
Point number or a Seven. If the shooter rolls the Point before rolling
a Seven he/she wins, however if the shooter throws a Seven before
rolling the Point he/she loses.
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Ultimately we would like to calculate P(shooter wins). But for now, let's just
calculate

P(shooter wins on Come-out roll) = P(7 or 11) = P(7) + P(11).

Using the language of page 1, what is X’ in this case? Let d; denote the number
showing on the first die and dy denote the number showing on the second die.
d; and d; are integers from 1 to 6. So X is the set of ordered pairs (d;, ds) or

(6,6) (6,5) (6,4) (6,3) (6,2) (6,1)
(5,6) (5,5) (5,4) (5,3) (5,2) (5,1)
(4,6) (4,5) (4,4) (4,3) (4,2) (4,1)
(3,6) (3,5) (3,4) (3,3) (3,2) (3,1)
(2,6) (2,5) (2,4) (2,3) (2,2) (2,1)
(1,6) (1,5) (1,4) (1,3) (1,2) (1,1)

If the dice are fair, then the pairs are all equally likely. Since there are 36 of
them, we assign P(dy, ds) = 1/36 for any combination (d;,ds). Finally, we can
calculate

P(7 or 11) = P(6,5) + P(5,6) + P(6,1) + P(5,2)
+P(4,3) + P(3,4) + P(2,5) + P(1,6) = 8/36 = 2/9.

The previous calculation uses desideratum 3 for probability measures. The dif-
ferent pairs (6,5), (5,6), ..., (1,6) are disjoint, so the probability of their union
is the sum of their probabilities.

Example 1.1 illustrates a common situation. We know the probabilities of
some simple events like the rolls of individual dice, and want to calculate the
probabilities of more complicated events like the success of a Come-out roll.
Sometimes those probabilities can be calculated mathematically as in the
example. Other times it is more convenient to calculate them by computer
simulation. We frequently use R to calculate probabilities. To illustrate,
Example 1.2 uses R to calculate by simulation the same probability we found
directly in Example 1.1.

Example 1.2 (Craps, continued)

To simulate the game of craps, we will have to simulate rolling dice. That's like
randomly sampling an integer from 1 to 6. The sample () command in R can do
that. For example, the following snippet of code generates one roll from a fair,
six-sided die and shows R's response:
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> sample(1:6,1)
[11 1
>

When you start R on your computer, you see >, R's prompt. Then you can type
a command such as sample(1:6,1) which means “take a sample of size 1 from
the numbers 1 through 6”. (It could have been abbreviated sample(6,1).) R
responds with [1] 1. The [1] says how many calculations R has done; you can
ignore it. The 1 is R's answer to the sample command; it selected the number
“1". Then it gave another >, showing that it's ready for another command. Try
this several times; you shouldn’t get “1" every time.
Here's a longer snippet that does something more useful.

> x <- sample ( 6, 10, replace=T ) # take a sample of

# size 10 and call it x
> x # print the ten values
[1] 6 423443662

> sum ( x == 3 ) # how many are equal to 37
[1] 2
>

Note
e # is the comment character. On each line, R ignores all text after #.

e We have to tell R to take its sample with replacement. Otherwise, when R
selects “6” the first time, “6" is no longer available to be sampled a second
time. In replace=T, the T stands for True.

e <- does assignment. l.e., the result of sample ( 6, 10, replace=T )
is assigned to a variable called x. The assignment symbol is two characters:
< followed by -.

e A variable such as x can hold many values simultaneously. When it does,
it's called a vector. You can refer to individual elements of a vector. For
example, x[1] is the first element of x. x[1] turned out to be 6; x[2]
turned out to be 4; and so on.
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e == does comparison. In the snippet above, (x==3) checks, for each ele-
ment of x, whether that element is equal to 3. If you just type x ==
you will see a string of T's and F's (True and False), one for each element
of x. Try it.

e The sum command treats T as 1 and F as 0.

e R is almost always tolerant of spaces. You can often leave them out or add
extras where you like.

On average, we expect 1/6 of the draws to equal 1, another 1/6 to equal 2,
and so on. The following snippet is a quick demonstration. We simulate 6000
rolls of a die and expect about 1000 1's, 1000 2’s, etc. We count how many we
actually get. This snippet also introduces the for loop, which you should try to
understand now because it will be extremely useful in the future.

> x <- sample(6,6000,replace=T)

> for (i in 1:6 ) print ( sum ( x==i ))
[1]1 995

[1] 1047

[1] 986

[1] 1033

[1] 975

[1] 964

>

Each number from 1 through 6 was chosen about 1000 times, plus or minus a
little bit due to chance variation.

Now let's get back to craps. We want to simulate a large number of games,
say 1000. For each game, we record either 1 or 0, according to whether the
shooter wins on the Come-out roll, or not. We should print out the number of
wins at the end. So we start with a code snippet like this:

# make a vector of length 1000, filled with 0’s
wins <- rep ( 0, 1000 )
for ( i in 1:1000 ) {
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simulate a Come-out roll
i1f shooter wins on Come-out, wins[t] <- 1

sum ( wins ) # print the number of wins

Now we have to figure out how to simulate the Come-out roll and decide whether
the shooter wins. Clearly, we begin by simulating the roll of two dice. So our
snippet expands to

# make a vector of length 1000, filled with O’s
wins <- rep ( 0, 1000 )
for (i in 1:1000 ) {
d <- sample ( 1:6, 2, replace=T )
if ( sum(d) == 7 || sum(d) == 11 ) wins[i] <- 1
}

sum ( wins ) # print the number of wins

The “|]" stands for “or”. So that line of code sets wins[i] <- 1 if the sum of
the rolls is either 7 or 11. When | ran this simulation R printed out 219. The
calculation in Example 1.1 says we should expect around (2/9) x 1000 ~ 222
wins. Our calculation and simulation agree about as well as can be expected
from a simulation. Try it yourself a few times. You shouldn’t always get 219.
But you should get around 222 plus or minus a little bit due to the randomness
of the simulation.

Try out these R commands in the version of R installed on your computer.
Make sure you understand them. If you don’t, print out the results. Try varia-
tions. Try any tricks you can think of to help you learn R.

1.2 Probability Densities

So far we have dealt with discrete probabilities, or the probabilities of at
most a countably infinite number of outcomes. For discrete probabilities, X
is usually a set of integers, either finite or infinite. Section 1.2 deals with the
case where X is an interval, either of finite or infinite length. Some examples
are



