CSCI 4150 Introduction to Artificial Intelligence, Fall 2000
Assignment 6 Support code release notes

1 Overview

There are three files of Scheme code:

e abcode.com which contains the play-hand and play-round function and other stuff to administer
the game. The replay-hand function is not available yet.

e infofunc.scm which contains a few functions that provide information to your poker player. You
can look at these for examples of functions that access hand- and card-information data structures.

e poker.scm which contains support code for cards, dealing, and evaluating hands

There are also several sample poker players that you can look at. These were really written more for testing
the support code than as serious poker players. They illustrate the syntax and some of the features of this
rule-based implementation. The files are:

e playerl.scm provides the player Ace
e playerS.scm provides the player Sharky
e human.scm provides the human interface so you can play against your programs

More sample players will be available soon.

There are about 2200 lines (so far) in the source code files for this support code, which has all been
written in the past week and a half. So, although I hate to admit it, there are probably some bugs that
I haven’t found yet. If you find a problem, please let me know. In the meantime, I'll continue my own
testing.

1.1 Getting started

Download all the files into the same directory and try playing against one or both of the sample players I
am providing:

(load "a6code™)
(play-hand "human

" "playerl")
You will only ever need to load the a6code.com file — it will load the other two source code files. The
play-hand (or play-round function will load your player files.

The defaults are set to print out a lot of information to the screen. You can learn how to change this later
in the document.

2 Important changes and clarifications

e There is now an ante of 5 clams, i.e. all players will put 5 clams into the pot before the cards are dealt.
This is to encourage players that try to win rather than decide when to participate.

e If you want to call a user defined action, you do not use the “call” keyword now. This is because that
name is used by one of the terminal betting actions.

e There is only a forall rule quantifier (not an exists), and there is additionally a forall ~and a
exists predicate. You can think of the rule quantifier as a looping construct; it will try to fire the
subrule once for every value in the given set.

The forall ~ and exists predicates are (more properly) a conjunction and disjunction (respectively)
over all values in the set. The syntax for these quantifiers is as follows:

(forall <var> in <list> predicate ...)
(exists <var> in <list> predicate ...

Note that the entire quantifier serves as a predicate in a rule

e In addition to declaring high or low, you can also declare high /low. If you declare high /low, you must
win or tie for both the high and low halves of the pot. If not, you don’t win anything. This would be
particularly useful if you find yourself the only active player at the showdown. The terminal action
for making this declaration is (declare-high/low)

e The last-raise function can be called with 0 arguments (in which case it returns the amount of
the last raise) or with a single player-name as the argument (in which case it returns the amount of
the last raise made by that player). The original handout only specified that a player-name had to be

given.
e The previous-raise variable is not provided. I don’t think this information is important, but if it
is, you can get it using the last-raise function with 0 arguments.

e The following parameters have been set in the source-code. I have set them to what I think are reason-
able values, but I will reserve final judgement until after you have turned in your preliminary players
and we can play some rounds with them. The parameters are: ante = 5, min-raise = 5, max-raise = 50,
starting-clams = 1000, round-hands = 200, dealer-switch = 10.

e So that you can play multiple “copies” of your player against each other without creating separate
player files, player names will be changed to make them unique. The first instance of a player name
will have “-1 ” appended to it, with other instances numbered sequentially. This means that you code
should not assume that you know your player’s name! You can get your players name through the
mevariable.

e Your poker player should be contained in a single file! Because I am loading each player into its own
environment, if you load code from your player file, it probably won’t work properly. You'll have to
put your code in a single file anyway to submit it.

3 Running a game of poker

This section describes some details about running a game of poker with play-hand and play-round
Some of these details might not make sense until you read the rest of the document.

The play-hand and play-round functions take two to five filenames. The same file may be given
more than once, and multiple copies of that player will be created. As described in the previous section,
players will be renamed so that they all have unique names.

Although for the official rounds of poker, players will be seated randomly, these functions seat players
in the order that you specify the filenames. The player in the first file gets to bet first.

The files are loaded in the order given. The one implication of this is that if you use any of the functions
to control what output is printed to the screen (see Section 5.1), the last call to one of these functions will
have the final say on what gets printed!

Because files are loaded into their own environment, any global varibles you define in your file are only
accessible to you functions (and not to other players). “Private” information about your cards and such is
made available to your function by setting global variables in your player’s environment.

You may not change the value of any variable I provide! Doing so could possibly mess up running the
game.

3.1 Rule interpretation

Any arguments to actions and predicates are evaluated! Therefore, you must quote any argument that you
don’t want evaluated. For example,

((exists x in other/active-players
(or (poker:> (lo-hand x) one-pair)
(equal? x 'Ace)))
==> (pass))

This rule illustrates several points about quoting. The symbol Ace must be quoted so that it is not evaluated.
In specifying hand “constants” for comparing hands, you would normally have to write

(poker:> (lo-hand x) ’'(one-pair))
but I have made the following definition in the poker.scm file:
(define one-pair ’(one-pair))

Similar definitions exist for the other hands. Of the other symbols that are not quoted, the keyword “in ”
and the variable x are exceptions to the rule about quoting; the rest are either defined functions or variables.

3.2 Other rule stuff

I'suggest you write your rules so that they can produce a terminal action in a single pass. You should ensure
that they will produce a terminal action.

The interpreter will make multiple passes over your rules until it reaches a terminal action. If there is
any pass where no rule fires, then the interpreter will stop, assuming that there is an error. However, it is
more likely that you have a rule that will always fire each pass through your rules, so it’s quite possible
you'll end up in an infinite loop.

To address this problem, I've included the variable rule-iteration-limit which will stop inter-
pretation of your rules once it reaches that many iterations. You can change the value of this variable by
redefining it. It will initially be set to 10. Let me know if your rules require a higher limit so we can set in
appropriately for running rounds of poker.

4 Hand information

4,1 Public hand information

Quite a bit of information about the current hand is stored in a large list data structure which is available to
you as the global variable public/hand-information . The contents of this data structure are available
through a number of accessor functions:

e (puhi/seated-players public/hand-information)

Returns a list of names of players that are seated at the table.

¢ (puhi/seated-players-clams public/hand-information)
Returns a list of clams of players that are seated at the table (in the same order as puhi/seated-players

e (puhi/public-card-information public/hand-information)

Returns a list where each element is a “public card information” (abbreviated “puci”). Each element
of the list has the following form:

(player-name public-cards hi-hand lo-hand)

This list can be used as a association list. The public-cards function and the my/lo-hand and
my/hi-hand variables use information from this data structure through the accessors:

— (puci/public-cards public/hand-information)

— (puci/hi-hand public/hand-information)

— (puci/lo-hand public/hand-information)

e (puhi/betting-history public/hand-information)
Returns a list of the betting history to date. Each element is a list of the form: (player-name pass) ,
(player-name call) , or (player-name raise N) where Nis an integer. The first element of
the list is the most recent bet.

e (puhi/bets public/hand-information)

Returns a list of the total bet each player made. Each element corresponds to the player in the list
returned by puhi/seated-players

(puhi/showdown-information public/hand-information)

Returns a list of the following form:
((player-name cards hand declaration winnings) ...)

Only players that participated in the showdown are listed here. The cards element is a list of all five
of that player’s cards (the first card was the hole card). The declaration may be any of the symbols
high , low , and high/low . If the player didn’t win anything, winnings will be 0.

4.2 Private card information

There is also a data structure available to your player (and not shared with any other player) which has
information on your hand and on your opponents (public) cards. This is stored in the global variable
private/card-information . It has the form:

(your-player-name cards hand ((other-player-name hi-hand lo-hand)
(other-player-name hi-hand lo-hand)

)

This data structure is used to provide information to the hi-card and lo-card functions. The information
in this structure can be accessed with the following functions.

e (prci/cards private/hand-information)
e (prci/hand private/hand-information)

e (prci/other-player-list public/hand-information)

This list can be used as an association list to search for a player’s entry by name. The following
accessors operate on one of the elements of this list:

— (opl/hi-hand public/hand-information)
— (opl/lo-hand public/hand-information)

Here is the source code for some of the functions provided to you that accesses this data structure:

(define (my/cards)
(second private/card-information))

(define (lo-hand player-name)
(let ((other-player-info
(assoc player-name (prci/other-player-list
private/card-information))))
(if (null? other-player-info)
(error "Invalid player name given to function lo-hand" player-name)
(opl/lo-hand other-player-info))))

(define (hi-hand player-name)
(let ((other-player-info
(assoc player-name (prci/other-player-list

private/card-information))))
(if (null? other-player-info)
(error "Invalid player name given to function hi-hand" player-name)
(opl/hi-hand other-player-info))))

5 Printing to the screen and to files

In developing your poker player, you will probably want to run, test, and debug it at several levels, so I've
tried to design a flexible system for controlling what output is printed to the screen. You can also have
output directed to a file.

5.1 Hand information

For now, the main control you'll probably want to have is whether the hole cards are printed to the screen
or not. If you're playing against the computer, you then have the option of cheating! Anyway, here are
three functions that you can use to control this:

e (print-everything)
e (print-only-public)
e (set-printing . args)

These functions can be executed after you have loaded the a6code file, or they can be put in your players
file (see the human.scm player for an example). The first two cause basically everything to be printed. The
last function lets you specify exactly what you want or don’t want. Here are your choices:

o table-info : who is seated at the table

e all-cards :shows all the cards that are dealt (including the hole cards)

public-cards : shows only the face-up cards that are dealt

betting : shows the detailed betting sequence

declarations : prints some messages while it gets declarations from the players

showdown: prints the results of the showdown

learning : tells you whose learning function is being called

debug-info : prints out messages that I was using in debugging

5.2 Rule execution information

Independent of the above, you can control what information is printed about what rules of your player
are firing. To control this, you must define the variable *print-to-screen* in your player’s file. When
the play-hand procedure loads your file, it will look for this variable. Its value should be a list with any
combination of the following symbols as elements

¢ state-info : prints out all the standard variables and attributes available to your player

predicate-matching : prints details of testing predicates

rule-firings : prints which rules fire

action-execution : prints details of what actions are executed

5.3 Printing to files

You can also have any of this information printed out to a file for later review. See the player5.scm file
for an example. You need to define the variable *print-to-file*

