Probability and Biology

e Probability comes up in everyday life — predicting the
weather, lotteries or sports betting, strategies for card
games, understanding risks of passing genetic diseases to
children, assessing your own risks of diseases associated in
part with genetic causes.
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Random Sampling

e Most of the formal methods of statistical inference we will
use in this class are based on the assumption that the
individual units in the sample are sampled at random from
the population of interest.

e (Ignore for the present that in practice, individuals are almost
never sampled at random, in a very formal sense, from the
population of interest.)

e Taking a simple random sample of size n is equivalent to the
process of:

1. representing every individual from a population with a
single ticket;

2. putting the tickets into large box;

3. mixing the tickets thoroughly;

4. drawing out n tickets without replacement.

e Stratified random sampling and cluster sampling are exam-
ples of random sampling processes that are not simple. Data
analysis for these types of sampling strategies go beyond the
scope of this course.
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Probability and Biology

Why should we know something about probability?

e Some biological processes seem to be directly affected by
chance outcomes. Examples include formation of gametes
and occurrence of genetic mutations.

e Formal statistical analysis of biological data assumes that
variation not explained by measured variables is caused by
chance.

e Chance might be used in the design of an experiment, such
as the random allocation of treatments or random sampling
of individuals.

e Probability is the language with which we express and
interpret assessment of uncertainty in a formal statistical
analysis.

e Formal statistical analysis depends on modeling observed
data as the realization of a random process.
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Inference from Samples to Populations

e Statistical inference involves making statements about pop-
ulations on the basis of analysis of sampled data.

e The Simple random sampling model is useful because it
allows precise mathematical description of the random distri-
bution of the discrepancy between statistical estimates and
population parameters. This is known as chance error due
to random sampling.

e When using the random sampling model, it is important
to ask what is the population to which the results will
be generalized? The use statistical methods that assume
random sampling on data that is not collected as a random
sample is prone to sampling bias, in which individuals do not
have the same chance of being sampled.

e Sampling bias can lead to incorrect statistical inferences
because the sample is unrepresentative of the population in
important ways.
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Simple Random Sampling

e The defining characteristic of the process of simple random
sampling is that every possible sample of size n has the same
chance of being selected.

e In particular, this means that (a) every individual has the
same chance of being included in the sample; and that (b)
members of the sample are chosen independently of each
other.

e Note that point (a) above is insufficient to define a simple
random sample. As an example, consider sampling one
couple at random from a set of ten couples. Each person
would have a one in ten chance of being in the sample, but
the sampling is not independent. Possible samples of two
people from the population who are not in a couple have no
chance of being sampled while each couple has a one in ten
chance of being sampled.
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Probability

e Probability is a numerical measure of the likelihood of an
event.

e Probabilities are always between 0 and 1, inclusive.

e Notation: The probability of an event E is written Pr{E}.

Examples:

If a fair coin is tossed, the probability of a head is

Pr{Heads} = 0.5

If bucket contains 34 white balls and 66 red balls and a ball is
drawn at random, the probability that the drawn ball is white is

Pr{white} = 34/100 = 0.34
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Using R to Take a Random Sample

Suppose that you have a numbered set of individuals, numbered
from 1 to 98, and that I wanted to sample ten of these. Here is
some R code that will do just that.

> sample(1:98, 10)
[1] 19 74 3 51 70 75 14 31 76 86

In the sample function, the first argument is the set from which
to sample (in this case the integers from 1 to 98) and the second
argument is the sample size.

In the output, the [1] is R's way of saying that that row of output
begins with the first element.

The same code executed again results in a different random
sample.
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Examples of Interpretations of
Probability

e Coin-tossing — it is reasonable to consider tossing a coin
many times where each coin toss can be thought of as
a repetition of the same basic chance operation. The
probability of heads can be thought of a the long-run relative
frequency of heads.

e Packer Football — the outcome of the next Packer
game is uncertain, but it is less reasonable to think about
the outcome (Packers win, lose, or tie) as something
that could be repeated indefinitely. The long-run relative
frequency interpretation of probability does not allow for an
interpretation of the probability of an event that will occur
only once.

e Evolution — the statement “molluscs form a monophyletic
group” means that all living individuals classified as molluscs
have a common ancestor that is not an ancestor of any non-
molluscs. It is uncertain whether or not this statement is
true.
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Interpretations of Probability

The frequency interpretation of probability defines the proba-
bility of an event E as the relative frequency with which event
E would occur in an indefinitely long sequence of independent
repetitions of a chance operation.

A subjective interpretation of probability defines probability
as an individual's degree of belief in the likelihood of an
outcome. This school of thought allows the use of probability
to discuss events that are not hypothetically repeatable.
The textbook follows a frequency interpretation of probabil-
ity.

Statistical methods based on subjective probability are called
Bayesian, named after the Reverend Thomas Bayes who first
proved a mathematical theorem we will encounter later. In
the Bayesian approach to statistics, everything unknown is
described with a probability distribution. Bayes’ Theorem
describes the proper way to modify a probability distribution
in light of new information.
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Comparing Bayesian and Frequentist
Approaches

e A Bayesian approach to statistical inference allows one to
quantify uncertainty in a statement with a probability and
describes how to update the probability in light of new data.

e A frequency approach to statistical inference does not allow
direct quantification of uncertainty with probabilities for
events that happen only once.

e A frequentist approach would ask instead, if I assume that
the event is true, how likely is an observed outcome? If the
probability of the observed outcome is low enough relative
to some alternative, this would be seen as evidence against
the hypothesis.
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Interpretations of Probability

In particular, Bayesian methods treat population parameters
as random variables, requiring a probability distribution based
on prior knowledge and not on data.

Frequency methods treat population parameters as fixed, but
unknown.

Methods of statistical analysis based on the frequency
interpretation of probability are in most common use in the
biological science, but Bayesian approaches are becoming
more accepted and more prevalent.

It is my desire to teach you the frequentist approach to
statistical inference while leaving you open-minded about
learning Bayesian statistics at a future encounter with
statistics.

This requires education in the calculus of probability.
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Example (cont.)

Here are two events of relevance.

S = {stroke before age 75} H = {high blood pressure at age 70}

With this notation, the statement 1. Ten percent of people aged
70 will suffer a stroke within five years; becomes

Pr{S} =0.10

The second statement 2. Of those individuals who had their first
stroke within five years after turning 70, forty percent had high
blood pressure at age 70; becomes

Pr{H|S} = 0.40

The symbol | is read “given” and indicates that the value 0.40
is a conditional probability. It may not be true that 40 percent
of all 70-year-olds have high blood pressure. The statement is
conditional on having had a stroke between ages 70 and 75.
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Conditional Probability and Probability
Trees

It is a common setting in biological probability problems for an
event to consist of the outcomes from a sequence of possibly
dependent chance occurrences. In this case, a probability tree is
a very useful device for guiding the appropriate calculations.

We have already discussed definitions of probability and events.
The following example will illustrate definitions of conditional
probability, independence of events and several rules for calcu-
lating probabilities of complex events.
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Example (cont.)

The third statement 3. Of those individuals who did not have a
stroke by age 75, twenty percent had high blood pressure at age
70; becomes

Pr{H|S°} = 0.20

The question of interest, What is the probability that a 70 year-
old patient with high blood pressure will have a stroke within five
years? becomes

What isPr{S|H}?

Notice that in this question, the order of conditioning is reversed.
It is precisely this situation where Bayes' Theorem is useful.

Statistics 371, Fall 2004 13

Example

The following relative frequencies are known from review of
literature on the subject of strokes and high blood pressure in
the elderly.

e 1. Ten percent of people aged 70 will suffer a stroke within
five years;

e 2. Of those individuals who had their first stroke within five
years after turning 70, forty percent had high blood pressure
at age 70;

e 3. Of those individuals who did not have a stroke by age 75,
twenty percent had high blood pressure at age 70.

What is the probability that a 70 year-old patient with high blood
pressure will have a stroke within five years?

To answer this question, it is useful to introduce a notation to
define the relevant events and their probabilities.
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Formal Probability Rules A Probability Tree for the Example

e Non-negativity: For any event E, 0 < Pr{E} < 1. e Exactly one path through the tree is realized.
. ) : e The probability of a path through the tree is the product of the edge
e Outcome space: The probability of the event of all possible probabilities.
outcomes is 1. e Probabilities out of a point must sum to one.
. 1 e Pr{S} =0.10 implies that Pr{S°} = 1—0.10 = 0.90. These unconditional
e Complements: Pr{E‘} =1 - Pr{E}. probabilities appear at the first branching point.
e Disjoint events: If events E; and E5 are disjoint or mutually e Conditional probabilities appear at the other branching points.

exclusive, meaning that it is impossible for both events to

occur in a single realization, then
H oo04

Pr{E1 or Ex} = Pr{E 1} 4+ Pr{Ex}. S

0.1

- - C
¢ Inclusion-exclusion: For any two events E; and FEo, H™ o0

0.9

0.4
Pr{E1 or Ex} = Pr{E1} + Pr{E>} — Pr{E1 and E»} o2 H o
—

HE¢ o7
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Conditional Probability and
Example (cont.)

Independence
Definition: The conditional probability of Ep given Eq is defined e We can find the unconditional probability of high blood pressure.
to be Pr{H} = Pr{S and H} 4+ Pr{S° and H} = 0.04 4+ 0.18 = 0.22
_ Pr{EQ and El} e Of those with high blood pressure, the proportion who had a stroke is
Pr{Ez| E1} = Pr{E:} computed as follows.
provided that Pr{E;} > 0. Pr{S|H} =0.04/0.22 = 0.182

Definition: Two events are independent if one event does not
affect the probability of the other event. Specifically, events E;

and E, are independent if S
0.1

Pr{Ex| E1} = Pr{E>} 06 HE o0s
02
0<8

H oo4

An equivalent definition is events E1 and E5 are independent if H o1s

0.9

Pr{E; and Ey} = Pr{E1} x Pr{E,} s¢

HE o7
e Multiplication: For any events E; and E»,

Pr{E1 and Ex} = Pr{E1} x Pr{E>| E1}
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Derivation of Bayes’ Theorem

Pr{E; and A}
Pr{A}
Pr{E;} Pr{A| E;
= {B:} PriA| Ei} multiplication rule
Pr{A}
Pr{E;} Pr{A| E;
= — { B} PriA| Ei} law of total probability
i=1

Pr{E;| A} def. of conditional prob.

For specific problems, it is often easier to apply the definition of
conditional probability and then use the multiplication rule and
the law of total probability separately than to just pull out Bayes’
Theorem in all of its glory.
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Law of Total Probability

Suppose that we want to find Pr{A}, but we only know con-
ditional probabilities of A given list of events that encompasses
all possibilities. We can find Pr{A} by conditioning on which of
these events occurred.

Law of Total Probability: Suppose that events FEq, Ep,..., Ep
form a partition of the space of possible outcomes. This means
that exactly one of the events must occur. Suppose we also
know all of the probabilities Pr{E;} and all of the conditional
probabilities Pr{A| E;}. Then,

n
Pr{A} = Y Pr{A|E;}Pr{E;}
i=1
This is equivalent to adding up some of the probabilities at the
end of a probability tree.
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Probability Rules for Conditional
Probabilities

The rules extend to conditional probabilities. Let A be another
event on which we condition.

Non-negativity: For any event E, 0 < Pr{E|A} < 1.
Outcome space: Pr{A|A} =1.

Complements: Pr{E‘|A} =1—-Pr{E|A}.

Disjoint events: If events E; and E> are disjoint,

Pr{E1 or E»| A} = Pr{Eq| A} 4+ Pr{E>| A}
e Inclusion-exclusion: For any two events E; and Eb,
Pr{Ey, or Ex| A} = Pr{E1| A} 4+ Pr{E»| A} — Pr{E1 and E>| A}
o Multiplication: For any events E; and E»,

Pr{E: and E>| A} = Pr{E1| A} x Pr{E>| Ey and A}

e Conditional probability: Pr{E>|FE; and A} = W.

e Law of total probability: If Ei, E»,..., E, are a partition of A, then

Pr{B|A} =) Pr{B|E; and A} Pr{E;|A}
=1
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Bayes’ Theorem

Bayes’ Theorem is a statement of a generalization of the
calculation we carried out with the probability tree.

Bayes’ Theorem follows from the previous formal definitions.

Bayes’ Theorem: Suppose that events FEq, E»,...,E, form a
partition of the space of possible outcomes. Then,
Pr{A| E;} Pr{E;}

n

> Pr{A|E;} Pr{E;}

j=1
An interpretation of Bayes’ Theorem is the following. Before
observing any data, we have prior probabilities Pr{E;} for each
of these events. After observing an event A, we calculate
the posterior probabilities Pr{E;| A} in response to the new
information that event A occurred.

PriE;| A} =
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Example (cont.)

The father is part of the F2 generation, which implies that
Pr{F} =3/4 and Pr{H} = 1/2. Knowing that the father has the
dominant trait affects the probability that he is heterozygous.

Pr{H and F Pr{H 1/2 2
pr(| py = PrULand £} _ Pr{f}y _1/2_ 2

Pr{F} Pr{F} 3/4 3
Notice that in this example, Pr{H and F} = Pr{H} because
every heterozygote exhibits the dominant trait. (H is a subset

of F, so the event H and F is the same event as H.)
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Genetics Example

Problem:

A single gene has a dominant allele A and recessive allele a. A
cross of AA versus aa leads to F1 offspring of type Aa. Two
of these mice are crossed to get the F2 generation, some of
which are AA, some of which are Aa, and some of which are
aa. A male with the dominant trait from the F2 generation is
randomly selected. He is either homozygous dominant (AA) or
heterozygous (Aa). He is mated with a homozygous recessive
(aa) female. They have one offspring with the dominant trait.

Given the other information in the problem, what is the
probability that the father is heterozygous?
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Example (cont.)

The original question was to find Pr{H|D and F}. First, we
can use a variation on the definition of conditional probability
by continuing to condition on event F that the father has the
dominant trait.

Pr{H and D|F}

Pr{H|D and F} =

Pr{D|F}
A variation of the multiplication rule applies to the numerator.
2 1 1
Pr{H and D|F} =Pr{H|F}Pr{D|H and F}:§X§:§

A variation of the law of total probability applies to the
denominator.

Pr{D|F} = Pr{H|F}Pr{D|H and F}+ Pr{H®|F}Pr{D|H® and F}
S \37 2 <3 3

. 1/3 1
So the final answer is 23 =73
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Example (cont.)

Begin by defining several events.

D = {offspring is dominant}
F = {father is dominant}
H {father is heterozygous for the trait}

With this notation, we are asked to find Pr{H | D and F}.

It is also useful to write down the probabilities we do know from
the problem setting in terms of these events. For this problem,
this assumes some background knowledge of genetics.

We know the genotype of the mother (aa). We can't compute
Pr{D} directly, but we could if we knew the father’'s genotype
as well. If the father’'s genotype is (AA), the offspring is certain
to have the dominant trait, Pr{D| H} = 1, while if the father’s
genotype is heterozygous (Aa), then the offspring is equally likely
to be dominant or recessive, Pr{D|H} = 0.5.
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Probability Mass Functions

e A probability mass function is a list of the possible values of
the random variable and the probability associated with each
possible value.

e The sum of the probabilities over all possible values must be
one, and the probabilities must be non-negative.

Example: Two different ways to specify the same discrete
probability distribution.

y | 1] 2| 3| 4
Pr{Y =y}[01]02[03[0.4

Pr{Y =y} =y/10 for y =1,2,3,4.
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Random Variables

e A random variable is a numerical variable whose value
depends on a chance outcome.

e While we can imagine other cases, most random variables we
will see in practice are either discrete or continuous.

e A probability distribution answers the question, how likely is
it that a random variable’s realized value will be in some set?

e There are multiple ways to describe probability distributions.

e The distributions of continuous random variables are most
often described by probability density curves.

e The distributions of discrete random variables are most
often described by a table or formula that specifies the
probability associated with each possible value. This is called
a probability mass function.
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Cumulative Distribution Functions

e The cumulative distribution function (cdf) answers the
question, how much probability is less than or equal to y?

e The cdf F is defined to be F(y) = Pr{Y <y}.

e CDFs of continuous random variables are continuous curves
that never decrease, moving from 0 up to 1.

o CDFs of discrete random variables are step functions that
never decrease while moving from O up to 1 in discrete jumps.

e For discrete random variables, I think of probability as one
unit of stuff that has been broken into chunks. The chunks
are spread out on a number line.

e For continuous random variables, I think of probability as one
unit of stuff that has been ground into a fine dust and spread
out on a number line.
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Probability Density Curves

e You can think of a probability density as an idealized histogram, scaled
so that the total area under the curve is one.

e For any two numbers a and b (with a < b), and a continuous random
variable Y, we have that Pr{a < Y < b} is the area under the curve
between a and b.

e Density curves must be non-negative and the total area under each curve
must be exactly one.

P(1<Y<3) = 0.382
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The Binomial Distribution

The binomial distribution is a discrete probability distribution
that arises in many common situations. The canonical example
of the binomial distribution is counting the number of heads in
a fixed number of independent coin tosses.

Independent-Trials Model

In a series of n independent trials, each trial results in a success
(the outcome we are counting) or a failure. Each trial has the
same probability p of success. A binomial random variable counts

the number of successes in a fixed number of trials.

There are five key characteristics to look for when deciding if a
random variable has a binomial distribution.
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Means of Random Variables

The mean of a probability distribution is the location where the
probability balances.

For discrete random variable Y the mean puy, also known as the
expected value E(Y), is defined as a sum.

E(Y)=py = Zyz‘ Pr{Y =y;}

where the sum is understood to go over all possible values. The
sum is a weighted average of the possible values of Y where
the weights are the probabilities. The mean is a measure of the
center of a distribution.

The mean of a continuous random variable assumes knowledge
of calculus.
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The Binomial Distribution

e 1. Each trial has two possible outcomes. (It is also okay
for there to be multiple outcomes that are grouped to two
classes of outcomes.)

2. Trials are independent.

3. The number of trials, n, is fixed in advance.

4. Each trial has the same success probability, p.

5. The random variable counts the number of successes in
the n trials.

Parameters: The binomial distribution is completely determined
by two parameters. These are n, the number of trials, and p the
success probability common to each trial.
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Variance of Random Variables

The variance of a probability distribution is a measure of its
spread, namely the expected value of the squared deviation from
the mean.

For discrete random variable Y the variance a%, also known as
Var(Y), is defined as

E((Y = py)?) =09 = > (yi — my)? Pr{¥Y =y}
i
where the sum is understood to go over all possible values.
The standard deviation is the square root of the variance. The

standard deviation may be interpreted as a typical distance for
the random variable to be from the mean of the distribution.
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Some Binomial

Graphs

Binomial Distribution

Binomial Distribution

Binomial Distribution

Binomial Distribution (cont.)

The probability mass function for the binomial distribution is

n=20,p=0.2 n=20,p=05 n=20,p=0.7
P8 <=Y <=12) = 0226449
< | Pr{Y =j} =nCjp/ (1 —p)"’ for j =0,1,...,n
g where
s n!
n Ci=—"
2 nLj ; -
s J'(n —j)!
R L2 R This is the probability of exactly j successes.
The formula arises because p?(1—p)"~J is the probability of each
o sequence of exactly j successes and n — j failures and there are
84 = nC’j different such sequences.
‘ ‘ ‘ ‘ ‘ The mean of a binomial distribution is p = np.
8 L 8 8 1
o s 1 15 s 1 1 6 8 1 1 u 1 1 . ) . o D
Possibl Values Possible Values possible Vales The variance of a binomial distribution is 0 = np(1 — p) so that
the standard deviation is o = 1/np(1 — p).
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Some Binomial Graphs Binomial Distribution (cont.)
0 p 0z B0 b0z B p 20 You should be able to calculate binomial probabilities using your
g1 « N calculator.
&1 We will teach you to do so using R.
<7 g It is even more important for you to recognize from a problem
z z . description when a binomial random variable is lurking and when
| H g - the random variable has a different distribution.
° ° o Random sampling is a setting that does not fit the binomial
o | setting exactly, because the individuals in a sample are not
‘ ‘ independent — (the same individual cannot be drawn twice).
8 ! gl .l ‘ L. 3 m\‘ MMM However, if the sample size n is much smaller than the population
o 2 4 s 5 1 0 s o o1 » w0 4 ® size, the binomial distribution is an excellent approximation to
Possible Values Possible Values Possible Values the genu'ne dIStrIbutIOI’l
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