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Probability and Biology

Why should we know something about probability?

• Some biological processes seem to be directly affected by

chance outcomes. Examples include formation of gametes

and occurrence of genetic mutations.

• Formal statistical analysis of biological data assumes that

variation not explained by measured variables is caused by

chance.

• Chance might be used in the design of an experiment, such

as the random allocation of treatments or random sampling

of individuals.

• Probability is the language with which we express and

interpret assessment of uncertainty in a formal statistical

analysis.

• Formal statistical analysis depends on modeling observed

data as the realization of a random process.
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Probability and Biology

• Probability comes up in everyday life — predicting the

weather, lotteries or sports betting, strategies for card

games, understanding risks of passing genetic diseases to

children, assessing your own risks of diseases associated in

part with genetic causes.
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Random Sampling

• Most of the formal methods of statistical inference we will

use in this class are based on the assumption that the

individual units in the sample are sampled at random from

the population of interest.

• (Ignore for the present that in practice, individuals are almost

never sampled at random, in a very formal sense, from the

population of interest.)

• Taking a simple random sample of size n is equivalent to the

process of:

1. representing every individual from a population with a

single ticket;

2. putting the tickets into large box;

3. mixing the tickets thoroughly;

4. drawing out n tickets without replacement.

• Stratified random sampling and cluster sampling are exam-

ples of random sampling processes that are not simple. Data

analysis for these types of sampling strategies go beyond the

scope of this course.
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Simple Random Sampling

• The defining characteristic of the process of simple random

sampling is that every possible sample of size n has the same

chance of being selected.

• In particular, this means that (a) every individual has the

same chance of being included in the sample; and that (b)

members of the sample are chosen independently of each

other.

• Note that point (a) above is insufficient to define a simple

random sample. As an example, consider sampling one

couple at random from a set of ten couples. Each person

would have a one in ten chance of being in the sample, but

the sampling is not independent. Possible samples of two

people from the population who are not in a couple have no

chance of being sampled while each couple has a one in ten

chance of being sampled.
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Using R to Take a Random Sample

Suppose that you have a numbered set of individuals, numbered

from 1 to 98, and that I wanted to sample ten of these. Here is

some R code that will do just that.

> sample(1:98, 10)

[1] 19 74 3 51 70 75 14 31 76 86

In the sample function, the first argument is the set from which

to sample (in this case the integers from 1 to 98) and the second

argument is the sample size.

In the output, the [1] is R’s way of saying that that row of output

begins with the first element.

The same code executed again results in a different random

sample.
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Inference from Samples to Populations

• Statistical inference involves making statements about pop-

ulations on the basis of analysis of sampled data.

• The Simple random sampling model is useful because it

allows precise mathematical description of the random distri-

bution of the discrepancy between statistical estimates and

population parameters. This is known as chance error due

to random sampling.

• When using the random sampling model, it is important

to ask what is the population to which the results will

be generalized? The use statistical methods that assume

random sampling on data that is not collected as a random

sample is prone to sampling bias, in which individuals do not

have the same chance of being sampled.

• Sampling bias can lead to incorrect statistical inferences

because the sample is unrepresentative of the population in

important ways.
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Probability

• Probability is a numerical measure of the likelihood of an

event.

• Probabilities are always between 0 and 1, inclusive.

• Notation: The probability of an event E is written Pr{E}.

Examples:

If a fair coin is tossed, the probability of a head is

Pr{Heads} = 0.5

If bucket contains 34 white balls and 66 red balls and a ball is

drawn at random, the probability that the drawn ball is white is

Pr{white} = 34/100 = 0.34
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Interpretations of Probability

• The frequency interpretation of probability defines the proba-

bility of an event E as the relative frequency with which event

E would occur in an indefinitely long sequence of independent

repetitions of a chance operation.

• A subjective interpretation of probability defines probability

as an individual’s degree of belief in the likelihood of an

outcome. This school of thought allows the use of probability

to discuss events that are not hypothetically repeatable.

• The textbook follows a frequency interpretation of probabil-

ity.

• Statistical methods based on subjective probability are called

Bayesian, named after the Reverend Thomas Bayes who first

proved a mathematical theorem we will encounter later. In

the Bayesian approach to statistics, everything unknown is

described with a probability distribution. Bayes’ Theorem

describes the proper way to modify a probability distribution

in light of new information.
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Interpretations of Probability

• In particular, Bayesian methods treat population parameters

as random variables, requiring a probability distribution based

on prior knowledge and not on data.

• Frequency methods treat population parameters as fixed, but

unknown.

• Methods of statistical analysis based on the frequency

interpretation of probability are in most common use in the

biological science, but Bayesian approaches are becoming

more accepted and more prevalent.

• It is my desire to teach you the frequentist approach to

statistical inference while leaving you open-minded about

learning Bayesian statistics at a future encounter with

statistics.

• This requires education in the calculus of probability.
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Examples of Interpretations of

Probability
• Coin-tossing — it is reasonable to consider tossing a coin

many times where each coin toss can be thought of as

a repetition of the same basic chance operation. The

probability of heads can be thought of a the long-run relative

frequency of heads.

• Packer Football — the outcome of the next Packer

game is uncertain, but it is less reasonable to think about

the outcome (Packers win, lose, or tie) as something

that could be repeated indefinitely. The long-run relative

frequency interpretation of probability does not allow for an

interpretation of the probability of an event that will occur

only once.

• Evolution — the statement “molluscs form a monophyletic

group” means that all living individuals classified as molluscs

have a common ancestor that is not an ancestor of any non-

molluscs. It is uncertain whether or not this statement is

true.
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Comparing Bayesian and Frequentist

Approaches
• A Bayesian approach to statistical inference allows one to

quantify uncertainty in a statement with a probability and

describes how to update the probability in light of new data.

• A frequency approach to statistical inference does not allow

direct quantification of uncertainty with probabilities for

events that happen only once.

• A frequentist approach would ask instead, if I assume that

the event is true, how likely is an observed outcome? If the

probability of the observed outcome is low enough relative

to some alternative, this would be seen as evidence against

the hypothesis.
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Conditional Probability and Probability

Trees
It is a common setting in biological probability problems for an

event to consist of the outcomes from a sequence of possibly

dependent chance occurrences. In this case, a probability tree is

a very useful device for guiding the appropriate calculations.

We have already discussed definitions of probability and events.

The following example will illustrate definitions of conditional

probability, independence of events and several rules for calcu-

lating probabilities of complex events.
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Example

The following relative frequencies are known from review of

literature on the subject of strokes and high blood pressure in

the elderly.

• 1. Ten percent of people aged 70 will suffer a stroke within

five years;

• 2. Of those individuals who had their first stroke within five

years after turning 70, forty percent had high blood pressure

at age 70;

• 3. Of those individuals who did not have a stroke by age 75,

twenty percent had high blood pressure at age 70.

What is the probability that a 70 year-old patient with high blood

pressure will have a stroke within five years?

To answer this question, it is useful to introduce a notation to

define the relevant events and their probabilities.
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Example (cont.)

Here are two events of relevance.

S = {stroke before age 75} H = {high blood pressure at age 70}

With this notation, the statement 1. Ten percent of people aged

70 will suffer a stroke within five years; becomes

Pr{S} = 0.10

The second statement 2. Of those individuals who had their first

stroke within five years after turning 70, forty percent had high

blood pressure at age 70; becomes

Pr{H |S} = 0.40

The symbol | is read “given” and indicates that the value 0.40

is a conditional probability. It may not be true that 40 percent

of all 70-year-olds have high blood pressure. The statement is

conditional on having had a stroke between ages 70 and 75.

Statistics 371, Fall 2004 12

Example (cont.)

The third statement 3. Of those individuals who did not have a

stroke by age 75, twenty percent had high blood pressure at age

70; becomes

Pr{H |Sc} = 0.20

The question of interest, What is the probability that a 70 year-

old patient with high blood pressure will have a stroke within five

years? becomes

What isPr{S |H}?

Notice that in this question, the order of conditioning is reversed.

It is precisely this situation where Bayes’ Theorem is useful.
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A Probability Tree for the Example

• Exactly one path through the tree is realized.
• The probability of a path through the tree is the product of the edge

probabilities.
• Probabilities out of a point must sum to one.
• Pr{S} = 0.10 implies that Pr{Sc} = 1−0.10 = 0.90. These unconditional

probabilities appear at the first branching point.
• Conditional probabilities appear at the other branching points.
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Example (cont.)

• We can find the unconditional probability of high blood pressure.

Pr{H} = Pr{S and H} + Pr{Sc and H} = 0.04 + 0.18 = 0.22

• Of those with high blood pressure, the proportion who had a stroke is
computed as follows.

Pr{S |H} = 0.04/0.22
.
= 0.182
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Formal Probability Rules

• Non-negativity: For any event E, 0 ≤ Pr{E} ≤ 1.

• Outcome space: The probability of the event of all possible

outcomes is 1.

• Complements: Pr{Ec} = 1 − Pr{E}.

• Disjoint events: If events E1 and E2 are disjoint or mutually

exclusive, meaning that it is impossible for both events to

occur in a single realization, then

Pr{E1 or E2} = Pr{E1} + Pr{E2}.

• Inclusion-exclusion: For any two events E1 and E2,

Pr{E1 or E2} = Pr{E1} + Pr{E2} − Pr{E1 and E2}
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Conditional Probability and

Independence
Definition: The conditional probability of E2 given E1 is defined

to be

Pr{E2 |E1} =
Pr{E2 and E1}

Pr{E1}

provided that Pr{E1} > 0.

Definition: Two events are independent if one event does not

affect the probability of the other event. Specifically, events E1

and E2 are independent if

Pr{E2 |E1} = Pr{E2}

An equivalent definition is events E1 and E2 are independent if

Pr{E1 and E2} = Pr{E1} × Pr{E2}

• Multiplication: For any events E1 and E2,

Pr{E1 and E2} = Pr{E1} × Pr{E2 |E1}
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Law of Total Probability

Suppose that we want to find Pr{A}, but we only know con-

ditional probabilities of A given list of events that encompasses

all possibilities. We can find Pr{A} by conditioning on which of

these events occurred.

Law of Total Probability: Suppose that events E1, E2, . . . , En

form a partition of the space of possible outcomes. This means

that exactly one of the events must occur. Suppose we also

know all of the probabilities Pr{Ei} and all of the conditional

probabilities Pr{A |Ei}. Then,

Pr{A} =
n

∑

i=1

Pr{A |Ei}Pr{Ei}

This is equivalent to adding up some of the probabilities at the

end of a probability tree.
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Bayes’ Theorem

Bayes’ Theorem is a statement of a generalization of the

calculation we carried out with the probability tree.

Bayes’ Theorem follows from the previous formal definitions.

Bayes’ Theorem: Suppose that events E1, E2, . . . , En form a

partition of the space of possible outcomes. Then,

Pr{Ei |A} =
Pr{A |Ei}Pr{Ei}

n
∑

j=1

Pr{A |Ej}Pr{Ej}

An interpretation of Bayes’ Theorem is the following. Before

observing any data, we have prior probabilities Pr{Ei} for each

of these events. After observing an event A, we calculate

the posterior probabilities Pr{Ei |A} in response to the new

information that event A occurred.
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Derivation of Bayes’ Theorem

Pr{Ei |A} =
Pr{Ei and A}

Pr{A}
def. of conditional prob.

=
Pr{Ei}Pr{A |Ei}

Pr{A}
multiplication rule

=
Pr{Ei}Pr{A |Ei}

n
∑

j=1

Pr{A |Ej}Pr{Ej}

law of total probability

For specific problems, it is often easier to apply the definition of

conditional probability and then use the multiplication rule and

the law of total probability separately than to just pull out Bayes’

Theorem in all of its glory.
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Probability Rules for Conditional

Probabilities
The rules extend to conditional probabilities. Let A be another

event on which we condition.

• Non-negativity: For any event E, 0 ≤ Pr{E |A} ≤ 1.
• Outcome space: Pr{A |A} = 1.
• Complements: Pr{Ec |A} = 1 − Pr{E |A}.
• Disjoint events: If events E1 and E2 are disjoint,

Pr{E1 or E2 |A} = Pr{E1 |A} + Pr{E2 |A}

• Inclusion-exclusion: For any two events E1 and E2,

Pr{E1 or E2 |A} = Pr{E1 |A} + Pr{E2 |A} − Pr{E1 and E2 |A}

• Multiplication: For any events E1 and E2,

Pr{E1 and E2 |A} = Pr{E1 |A} × Pr{E2 |E1 and A}

• Conditional probability: Pr{E2 |E1 and A} =
Pr{E2 and E1 |A}

Pr{E1 |A}
.

• Law of total probability: If E1, E2, . . . , En are a partition of A, then

Pr{B |A} =

n
∑

i=1

Pr{B |Ei and A}Pr{Ei |A}
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Genetics Example

Problem:

A single gene has a dominant allele A and recessive allele a. A

cross of AA versus aa leads to F1 offspring of type Aa. Two

of these mice are crossed to get the F2 generation, some of

which are AA, some of which are Aa, and some of which are

aa. A male with the dominant trait from the F2 generation is

randomly selected. He is either homozygous dominant (AA) or

heterozygous (Aa). He is mated with a homozygous recessive

(aa) female. They have one offspring with the dominant trait.

Given the other information in the problem, what is the

probability that the father is heterozygous?
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Example (cont.)

Begin by defining several events.

D = {offspring is dominant}

F = {father is dominant}

H = {father is heterozygous for the trait}

With this notation, we are asked to find Pr{H |D and F}.

It is also useful to write down the probabilities we do know from

the problem setting in terms of these events. For this problem,

this assumes some background knowledge of genetics.

We know the genotype of the mother (aa). We can’t compute

Pr{D} directly, but we could if we knew the father’s genotype

as well. If the father’s genotype is (AA), the offspring is certain

to have the dominant trait, Pr{D |Hc} = 1, while if the father’s

genotype is heterozygous (Aa), then the offspring is equally likely

to be dominant or recessive, Pr{D |H} = 0.5.
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Example (cont.)

The father is part of the F2 generation, which implies that

Pr{F} = 3/4 and Pr{H} = 1/2. Knowing that the father has the

dominant trait affects the probability that he is heterozygous.

Pr{H |F} =
Pr{H and F}

Pr{F}
=

Pr{H}

Pr{F}
=

1/2

3/4
=

2

3

Notice that in this example, Pr{H and F} = Pr{H} because

every heterozygote exhibits the dominant trait. (H is a subset

of F , so the event H and F is the same event as H.)
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Example (cont.)

The original question was to find Pr{H |D and F}. First, we

can use a variation on the definition of conditional probability

by continuing to condition on event F that the father has the

dominant trait.

Pr{H |D and F} =
Pr{H and D |F}

Pr{D |F}

A variation of the multiplication rule applies to the numerator.

Pr{H and D |F} = Pr{H |F}Pr{D |H and F} =
2

3
×

1

2
=

1

3

A variation of the law of total probability applies to the

denominator.

Pr{D |F} = Pr{H |F}Pr{D |H and F} + Pr{Hc |F}Pr{D |Hc and F}

=

(

2

3
×

1

2

)

+

(

1

3
× 1

)

=
2

3

So the final answer is
1/3
2/3

= 1
2.
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Random Variables

• A random variable is a numerical variable whose value

depends on a chance outcome.

• While we can imagine other cases, most random variables we

will see in practice are either discrete or continuous.

• A probability distribution answers the question, how likely is

it that a random variable’s realized value will be in some set?

• There are multiple ways to describe probability distributions.

• The distributions of continuous random variables are most

often described by probability density curves.

• The distributions of discrete random variables are most

often described by a table or formula that specifies the

probability associated with each possible value. This is called

a probability mass function.
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Probability Density Curves

• You can think of a probability density as an idealized histogram, scaled
so that the total area under the curve is one.

• For any two numbers a and b (with a < b), and a continuous random
variable Y , we have that Pr{a < Y < b} is the area under the curve
between a and b.

• Density curves must be non-negative and the total area under each curve
must be exactly one.

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

P(1<Y<3) = 0.382
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Probability Mass Functions

• A probability mass function is a list of the possible values of

the random variable and the probability associated with each

possible value.

• The sum of the probabilities over all possible values must be

one, and the probabilities must be non-negative.

Example: Two different ways to specify the same discrete

probability distribution.

y 1 2 3 4

Pr{Y = y} 0.1 0.2 0.3 0.4

Pr{Y = y} = y/10 for y = 1,2,3,4.
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Cumulative Distribution Functions

• The cumulative distribution function (cdf) answers the

question, how much probability is less than or equal to y?

• The cdf F is defined to be F (y) = Pr{Y ≤ y}.

• CDFs of continuous random variables are continuous curves

that never decrease, moving from 0 up to 1.

• CDFs of discrete random variables are step functions that

never decrease while moving from 0 up to 1 in discrete jumps.

• For discrete random variables, I think of probability as one

unit of stuff that has been broken into chunks. The chunks

are spread out on a number line.

• For continuous random variables, I think of probability as one

unit of stuff that has been ground into a fine dust and spread

out on a number line.
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Means of Random Variables

The mean of a probability distribution is the location where the

probability balances.

For discrete random variable Y the mean µY , also known as the

expected value E(Y ), is defined as a sum.

E(Y ) = µY =
∑

i

yi Pr{Y = yi}

where the sum is understood to go over all possible values. The

sum is a weighted average of the possible values of Y where

the weights are the probabilities. The mean is a measure of the

center of a distribution.

The mean of a continuous random variable assumes knowledge

of calculus.
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Variance of Random Variables

The variance of a probability distribution is a measure of its

spread, namely the expected value of the squared deviation from

the mean.

For discrete random variable Y the variance σ2
Y , also known as

Var(Y ), is defined as

E((Y − µY )2) = σ2
Y =

∑

i

(yi − µY )2 Pr{Y = yi}

where the sum is understood to go over all possible values.

The standard deviation is the square root of the variance. The

standard deviation may be interpreted as a typical distance for

the random variable to be from the mean of the distribution.
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The Binomial Distribution

The binomial distribution is a discrete probability distribution

that arises in many common situations. The canonical example

of the binomial distribution is counting the number of heads in

a fixed number of independent coin tosses.

Independent-Trials Model

In a series of n independent trials, each trial results in a success

(the outcome we are counting) or a failure. Each trial has the

same probability p of success. A binomial random variable counts

the number of successes in a fixed number of trials.

There are five key characteristics to look for when deciding if a

random variable has a binomial distribution.
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The Binomial Distribution

• 1. Each trial has two possible outcomes. (It is also okay

for there to be multiple outcomes that are grouped to two

classes of outcomes.)

• 2. Trials are independent.

• 3. The number of trials, n, is fixed in advance.

• 4. Each trial has the same success probability, p.

• 5. The random variable counts the number of successes in

the n trials.

Parameters: The binomial distribution is completely determined

by two parameters. These are n, the number of trials, and p the

success probability common to each trial.
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Binomial Distribution (cont.)

The probability mass function for the binomial distribution is

Pr{Y = j} = nCjp
j(1 − p)n−j for j = 0,1, . . . , n

where

nCj =
n!

j!(n − j)!

This is the probability of exactly j successes.

The formula arises because pj(1−p)n−j is the probability of each

sequence of exactly j successes and n − j failures and there are

nCj different such sequences.

The mean of a binomial distribution is µ = np.

The variance of a binomial distribution is σ2 = np(1− p) so that

the standard deviation is σ =
√

np(1 − p).
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Binomial Distribution (cont.)

You should be able to calculate binomial probabilities using your

calculator.

We will teach you to do so using R.

It is even more important for you to recognize from a problem

description when a binomial random variable is lurking and when

the random variable has a different distribution.

Random sampling is a setting that does not fit the binomial

setting exactly, because the individuals in a sample are not

independent — (the same individual cannot be drawn twice).

However, if the sample size n is much smaller than the population

size, the binomial distribution is an excellent approximation to

the genuine distribution.
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Some Binomial Graphs
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P(8 <= Y <= 12) = 0.226449
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Some Binomial Graphs
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