Cary Conference Discussion Draft — R. Pielke, Jr. 2-28-01

TheRole of Modelsin Prediction for Decision
Roger A. Pieke, Jr.
Discussion Draft of 28 February 2001
Paper prepared for
Cary Conference I X: Understanding Ecosystems:

The Role of Quantitative Modelsin Observations, Synthesis, and Prediction

Abstract

The processes of science and decision making share an important characteristic: success
in each depends upon the researcher or decision maker having some ability to anticipate
the consequences of their actions. The predictive capacity of science holds great appeal
for decision makers who are grappling with complex and controversial environmental
issues, by promising to enhance their ability to determine a need for and outcomes of
aternative decisions. Asaresult, the very process of science can be portrayed asa
positive step toward solving a policy problem. The convergence — and perhaps confusion
-- of prediction in science and prediction for policy presents a suite of hidden dangers for
the conduct of science and the challenge of effective decision making. This paper,
organized as a set of inter-related analytical vignettes, seeks to expose some of these
hidden dangers and to recommend strategies to overcome them in the process of
environmental decison making. The analytical vignettes are titled: Modeling for What?,
Importance of Uncertainty, Communicating Uncertainty, Understanding Predictability,
What isa*Good” Model?, and the paper concludes with a recommendation: For Better
Decisions, Question Predictions. In particular, this paper seeks to distill some of the
lessons gleaned from research on modeling, prediction, and decision making in the earth
and atmospheric sciences for quantitative modeling of ecosystems. One clear implication
of the few lessons presented in this paper is that the belief that modeling and prediction
can simultaneously meet the needs of both science and decision is untenable. For
ecosystem science, there fortunately exists a body of experience in understanding, using
and producing predictions across the sciences on which to build, to the potential benefit

of both research and policy.
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Introduction: Prediction in Science and Prediction for Decision

The processes of science and decision making share an important characteristic:
success in each depends upon the researcher or decision maker having some ability to
anticipate the consequences of their actions. On the one hand, “[being] predictive of
unknown facts is essentia to the process of empirical testing of hypotheses, the most
distinctive feature of the scientific enterprise” (Ayala 1993). Of course, in science the
“unknown facts” in question could lie in the past or the future. “Decision making,” on
the other hand, “is forward looking, formulating alternative courses of action extending
into the future, and selecting among alternatives by expectations of how things will turn
out” (Lasswell and Kaplan 1950).

The predictive capacity of science holds great appeal for decision makers who are
grappling with complex and controversial environmental issues, by promising to enhance
their ability to determine a need for and outcomes of alternative decisions. Asaresult,
the very process of science can be portrayed as a positive step toward solving a policy
problem. The appeal of this “two birds with one stone” line of reasoning is obvious for
decision makers who would place the onus of responsibility for problem solving onto the
shoulders of scientists. But this reasoning is seductive as well for scientists who might
wish to better justify public investment in research and for a public that has come to

expect solutions as a consequence of such investment (Sarewitz and Pielke 1999).

The convergence — and perhaps confusion -- of prediction in science and

prediction for policy presents a suite of hidden dangers for the conduct of science and the
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challenge of effective decision making. This paper, organized as a set of inter-related
analytical vignettes, seeks to expose some of these hidden dangers and to recommend
strategies to overcome them in the process of environmental decision making. In
particular, this paper seeks to distill some of the lessons gleaned from research on
modeling, prediction, and decision making in the earth and atmospheric sciences for
guantitative modeling of ecosystems, the focus of Cary Conference I X. The backgound

materials for the conference noted that
Recent years have seen dramatic advancements in the computational power and mathematical
tools available to modelers. Methodological advances in areas ranging from remote sensing to
molecular techniques have significantly improved our ability to parameterize and validate models
at awide range of spatial scales. The body of traditional, mechanistic, empirical research is also
growing phenomenally. Ecosystem scienceis ripe for major gains in the synthetic and predictive
power of its models, and that this comes at atime of growing need by society for quantitative

models that can inform debate about critical environmental issues
This background indicates that the community of ecosystem scientists is following other
fields — particularly the atmospheric, oceanic, and earth sciences -- down a path of using
integrative environmental modeling to advance science and to generate predictive
knowledge putatively to inform decision making. This paper distills some of the most
important lessons from these other fields that have journeyed down this perilous path,

focusing on the use of models to produce predictions for decision.

Modeling for What?

Bankes (1993) defines two types of quantitative models, consolidative and
exploratory, differentiated by their uses (cf. Morrison and Morgan 1999).2 A
consolidative model seeks to include al relevant facts into a single package and use the
resulting system as a surrogate for the actual system. The canonical example is that of
the controlled |aboratory experiment. Other examples include weather forecast and
engineering design models. Such models are particularly relevant to decision making
because the system being modeled can be treated as being closed, i.e., one “in which all

the components of the system are established independently and are known to be correct”

L http://www.ecostudies.org/cary9/Conference_Background and_Goals.htm
2 Of course, not all “models’ are quantitative or described in computer code, see, e.g., Morgan and
Morrison (1999).
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(Oreskes et d. 1994, 642). The creation of such amodel generally follows two phases.
first model construction and evaluation, and second operational usage of afinal product.
Such models can be used to investigate diagnostics (i.e., “what happened?’), process
(“why did it happen?’), or prediction (“what will happen?).

An exploratory model — or what Bankes (1993) calls a “prosthesis for the
intellect” -- isone in which al components of the system being modeled are not
established independently or are not known to be correct. In such a case, the model
allows for experiments with the model to investigate the consequences for modeled
outcomes of various assumptions, hypotheses, and uncertainties associated with the
creation of and inputs to the model. These experiments can contribute to at least three
important functions (Bankes 1993). Firgt, they can shed light on the existence of
unexpected properties associated with the interaction of basic assumptions and processes
(e.g., complexity or surprises). Second, in cases where explanatory knowledge is lacking,
exploratory models can facilitate hypothesis generation to stimulate further investigation.
Third, the model can be used to identify limiting, worst-case, or specia scenarios under
various assumptions of and uncertainty associated with the model experiment. Such
experiments can be motivated by observational data (e.g., econometric and hydrologic
models), scientific hypotheses (e.g., general circulation models of climate), or by a desire
to understand the properties of the model or class of models independent of real- world

data or hypotheses (e.g., Lovelock’s Daisyworld).

Both consolidative and exploratory models have important roles to play in science
and decision settings (Bankes 1993). However, the distinction between consolidative and
exploratory modeling is fundamental, but rarely made in practice or in interpretation of
research results. Often, the distinction isimplicitly (or explicitly) blurred to “kill two
birds with one stone” in modeling and predicting for science and policy (Pielke and
Sarewitz 1999). Consider, for example, the goal of the U.S. Global Change Research
Program, from 1989:
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To gain an adequate predictive understanding of the interactive physical, geological, chemical,
biological and social processes that regulate the total Earth System and, hence establish the

scientific basis for national and international policy formulation and decisions (CES 1989).3
And following from this blurring, most presentations by scientists and the media of the
results of national and international climate assessments have sought to imbue the
imprimatur of consolidative knowledge upon what are inherently exploratory exercises.”
Those who conflate the science and policy roles of prediction and modeling trade short-
term political or public gain, with a substantial risks of a more lasting loss of legitimacy
and political effectiveness (Sarewitz et al. 2000).°

Thus, one of the most important lessons to be learned from the experiences of
other scientific endeavors in which modeling has a potentia role to play in research and
decisonis. be clear about the purposes for which the modeling isto be used and
carefully examine any assumption that presumes isomor phism between the needs of

science and the needs of decision.

I mportance of Uncertainty

Uncertainty, in the view of economist John Maynard Keynes, is the condition of
all human life (Skidelsky 2000). Uncertainty means that more than one outcome is
consistent with our expectations (Pielke 2001). Expectations are aresult of judgment,
sometimes based on technical mistakes and interpretive errors, and shaped by values and
interests. Because uncertainty is a characteristic of every important decision, it is no
surprise then that society looks to science and technology to help clarify our expectations

in ways that lead to desired outcomes.

Because decision-making is forward-ooking decision makers have traditionally
supported research to quantify and even reduce uncertainties about the future. In many

cases, particularly those associated with closed systems — or systems that can be treated

% On the USGCRP see Pielke 2000a and 2000b.

“ On the interpretation of climate model results see Trenberth 1997, Edwards 1999, |PCC 2001; On the
media’ s presentation of climate research results see Henderson-Sellers 1998; On their role in decision see
Sarewitz and Pielke 2000 and Shackley et al. 1998.

® Of course, quantitative models have uses beyond simply producing “predictions’ (see Bankes 1993).
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as closed -- understanding uncertainty is a straightforward technical exercise;
probabilities in a card game are the canonical example. Two real-world examples include
error analysis in engineering and manufacturing and the actuarial science that underlies
many forms of insurance. But in many other circumstances — particularly those
associated with human action -- systems are intrinsically open and cannot be treated as
closed, meaning that understanding uncertainty is considerably more challenging. In
recent decades, many scientists have taken on the challenge of understanding such open
systems, e.g., global climate, genetic engineering, etc. And in the process of securing the
considerable public resources to pursue this challenge, scientists often explicitly promise

to “understand and reduce uncertainties” as input to important societal decisions.

Conventional wisdom holds that uncertainty is best understood or reduced by
advancing knowledge, an apparent restatement of the traditional definition of uncertainty
as “incomplete knowledge” (cf. Cullen and Small 2000).° But in reality, advancesin
knowledge can add significant uncertainty. For example, in 1990 the I ntergovernmental
Panel on Climate Change (IPCC) projected that a doubling of CO, would result in a 1.5°
to 4.5° C mean global temperature change. In 2001, after ters of billions of dollars of
investment in global-change research, the IPCC now concludes that a doubling of CO,
will result in a 1.5° to 6.0° C temperature change. Even as the IPCC has become more
certain that temperature will increase, the uncertainty associated with their projections
has a so increased. Why? Researchers have concluded that there are many more scenarios
of possible population and energy use than originally assumed, and have learned that the
global ocean-atmosphere-biosphere system is much more complex than was once thought

(IPCC 2001). Ignorance is bliss because it is accompanied by alack of uncertainty.

The promise of prediction is that the range of possible futures might be narrowed
in order to support (and indeed to some degree determine) decision making. By way of
contrast, in his Foundation series, science fiction writer Issac Asimov introduced the
notion of “psychohistory.” Asimov’s psychohistorians had the ability to predict the
future with certainty based on complex mathematical models. We know that Asimov’s

6 Uncertainty is also defined as a decision making bias and a psychological perception, see Weber (1999).



Cary Conference Discussion Draft — R. Pielke, Jr. 2-28-01

characters lie squarely in the realm of science fiction — there can be no psychohistory.
The future, to some degree, will always be clouded. But experience shows that this
cloudiness is variable, we can predict some events with skill and the promise of
prediction can be realized. Understanding, using and producing predictions depends
upon understanding their uncertainty. What isit that leads to the uncertainty of earth and
environmental predictions? What are the prospects of knowing the uncertainty of

specific predictions?

A simple example might prove useful. Consider the poker game known as five
card draw.’ In astandard 52 card deck there are atotal of 2,598,960 possible five card
poker hands. Lets assume that in your hand you hold a pair. What are the chances that
by exchanging the other 3 cards that you will draw athird card to match the pair?. In
this instance you can know with great precision that in 71.428 . . . % of such situations
you will fail to improve your hand. Thus, when you exchange three cards you are
“uncertain” about the outcome that will result, but you can quantify that uncertainty with

great certainty.

This sort of uncertainty is that associated with random processes, that is, onein
whicheach element of a set (in this case a deck of cards) has an equal chance of
occurring. Because we know the composition of the deck and the set of possible events
(i.e., the relative value of dealt hands), it is possible to precisely calculate the uncertainty
associated with future events. Scientists call this aleatory uncertainty and it is studied
using mathematical statistics (cf. Hoffman and Hammonds 1994, Stewart 2000). Such
uncertainty, by definition, cannot be reduced. One can never divine what the next card
will be, although one can precisely calculate what one's chances are of receiving a
particular card. Similarly, in predictions associated with the earth and environmental
sciences there is also irreducible uncertainty associated with the nature of random

processes.®

” For those unfamiliar with the game, each player is dealt five cards, with the object to obtain cards ranking
higher than those of the other players. After theinitial deal of 5 cards per player, each player has the option
to exchange up to 3 cards. The poker statistics reported in this section are taken from Scarne (1986).

8 There are other sources of irreducible uncertainty; some of these are discussed below.
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But let’s take the poker example a step further. Assume that you find yourself
playing cards with aless-than-honest dealer. This dedler is adding and removing cards
from the deck, so that the deck no longer has the standard 52 cards. The processis no
longer stationary — it is changing over time. If you were to know the cards added and
removed, i.e., to have the ability to quantify the changing composition of the deck, to
guantify uncertainty, you would simply need to recalcul ate the probabilities based on the
new deck of cards. But if you were unaware that the deck was changing in its
composition, then you could easily miscalculate the uncertainty associated with your
options. Similarly, if you were aware that the deck was changing, but not privy to the
exact changes, you would be unable to precisely calculate the uncertainty (but would
know that the assumption of a standard 52-card deck could be wrong). This sort of
uncertainty is called epistemic uncertainty and is associated with incomplete knowledge
of a phenomenon—and incomplete knowledge of the limits of one's knowledge (cf.
Hoffman and Hammonds 1994, Stewart 2000).

Unlike aleatory uncertainty, epistemic uncertainty can in some cases be reduced
through obtaining improved knowledge. In the case of the changing deck of cards
reduction of uncertainty could be done using several methods. For instance, one could
carefully observe the outcomes of alarge number of hands and record the actual
frequencies with which particular hands occur. For instance, if four Aces were added to
the deck, one would expect to be able to observe the results in the form of more hands
with Ace combinations. Of course, the more subtle the change, the more difficult it isto
detect.® An alternative approach to understanding uncertainty would be to build a model
of the card substitution process. This would require some sort of knowledge of the
underlying dynamics of the card substitution process. Such knowledge might include the
use of aknown scientific “law” or observed relationship. For instance, research might

reveal that the number of cards added to the deck is proportiona to the number of players

® In avery similar fashion some studies of global climate change use such amethod to assess whether the
storms, temperature, precipitation, etc. of one period differ significantly from that of another period (e.g.,
Trenberth and Hoar 1998).
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at the table. With such knowledge, a quantitative model of the poker game can be created
and the model can be used to generate understandings of the uncertainty associated with
various outcomes. The more one understands about the card replacement process, the
better understanding one can have about the associated uncertainties. But if the process
of changing cards were continuous (i.e., highly non-stationary or variable), then based on
the observations of dealt hand one might develop numerous equally plausible theories
about the changing nature of the probabilities. Unless one could discover the pattern
underlying the change process (i.e., in effect “close” the system, cf. Oreskes et al. 1994)

then such theories would be subject to continuous revision as experience unfolds.

But even though epistemic uncertainty can in principle be reduced, if oneis
dealing with open systems (as is generally the case for environmental predictions), the
level of uncertainty itself can never be known with absolute certainty. Seismologists
assigned a probability of 90 percent to their prediction of the Parkfield earthquake, but
the earthquake never occurred.’® Were the scientists simply confounded by the unlikely
but statistically explicable one-out-of-ten chance of no earthquake? Or because their
probability calculation was simply wrong—i.e., because the uncertainty associated with
the prediction was in fact huge? Similarly, regardless of the sophistication of global
climate models, many types of unpredictable events (volcanic eruptions that cool the
atmosphere; new energy technologies that reduce carbon emissions) can render today’s
climate predictions invalid, and associated uncertainties meaningless (see, e.g., Keepin
1986).

A central theme that emerges from experience is that important decisions are
often clouded by inherent uncertainty, and in many instances, efforts to reduce
uncertainty have the opposite effect (Pielke 2001).' Efforts to reduce uncertainty can
lead to a discovery the vast complexities associated with phenomena that evolve slowly

over long periods -- like earthquakes, global climate change, and nuclear waste disposal -

10 5ee Nigg 2000, Savage 1991, and Sieh et al. 1989.

1A related consideration is that attempts to eliminate uncertainty by changing thresholds for decision,
e.g., changing the wind-speed criteriafor evacuation, invariably result in trade-offs between false alarms
and misses (i.e., Typel and Type Il errors), with associated societal costs. See Stewart (2000).
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- were in fact previoudly underestimated, thereby having the effect of expanding the
range of future uncertainties (Sarewitz et al. 2000). In a decision setting, this can have
the perverse effect of increasing political controversy rather than reducing it, leading to
calls for even more research to reduce uncertainties, while the problem goes unaddressed.
No case illustrates this better than global climate change (Sarewitz and Pielke 2000).

One of the most critical issues in using models to develop information for
decision is to understand uncertainty, its sources and potential reducibility. AsWeber

(1999, 43, emphasis) observes,
If uncertainty is measurable and controllable, then forecasting and information management
systems serve a high value in reducing uncertainty and in producing a stable environment for
organizations. If uncertainty is not measurable and controllable, then forecasting and predictions
have limited value and need to be understood in such context. In short, how we view and

under stand uncertainty will determine how we make decisions.
Any effort that seeks to model open systems for the purpose of informing decision,
particularly through prediction, should also seek to understand uncertainty, including it
sources, potential reducibility, and relevant experience, in the context of the decision
making process. In some cases, such an effort may very lead to the conclusion that
decision making should turn to alternatives to prediction (e.g., Herrick and Sarewitz
2000, Brunner 2000).

Communicating Uncertainty

Experience shows that neither the scientific community nor decision makers have
agood record at understanding uncertainty associated with predictions (Sarewitz et al.
2000). Such understanding is necessary because “the decision making process is best
served when uncertainty is communicated as precisely as possible, but no more precisely
than warranted” (Budescu and Wallsten 1987, 76). But even in cases where uncertainty
iswell-understood, such as is typically the case in weather forecasting, scientists face
challenges in communicating the entirety of their knowledge of uncertainty to decision
makers. Often, experts place blame for this lack of communication on the perceived lack
of public ability to understand probabilistic information. The resulting policy

prescription is for increased public education to increase scientific literacy (e.g.,

10
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Augustine 1998).*? While improved scientific literacy has value, it is not the solution to

improving communication of information about uncertainty.

Consider the following analogy. Y ou wish to teach a friend how to play the game of
tennis. You carefully and accurately describe the rules of tennis to your friend, but you
speak in Latin to your Englishronly speaking friend. When you get onto the court your
friend fails to observe the rules that you so carefully described. Following, the game, it
would surely be inappropriate to criticize your friend as incapable of understanding
tennis, and futile to recommend additional tennis instruction (in Latin). But thisis exactly
the sort of dynamic observed in studies of public understanding of scientific
uncertainties. For example, Murphy (1981) documents that when weather forecasters call
for, say, a 70% chance of rain, decision makers understood the probabilistic element of
the forecast, but did not know whether rain has 70% chance for each point in the forecast
area, or that 70% of the areawould receive rain with a 100% probability, and so on.*® Do

you know?

The importance of importance of understanding and communicating uncertainties
associated with a prediction product was aptly illustrated in the case of the 1997 flooding
of the Red River of the North.'* In February 1997, forecasters predicted that the river
would see flooding larger than at any time in modern history. At Grand Forks, North
Dakota forecasters expected the spring flood to exceed the 1979 flood crest of 48.8 feet
sometime in April. Forecasters issued a prediction that the flood would crest at 49 feet,
hoping to convey the message that the flood would be the worst ever experienced. But
the message sent by the forecasters was not the message received by decision makersin

the community.

Decision makers in the community misinterpreted both the event being forecast
and the uncertainty associated with the forecast. First, the prediction of 49 feet, rather

12 Compare Rand (1998) and Wyat and Fox (1999).
13 Thereisaconsiderable literature on the use of weather forecasts that supports this line of argument. See
in particular the work of Murphy (e.g., 1981) and Baker (e.g., 2000).

11
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than conveying concern to the public, instead resulted in reduced concern. Locals
interpreted the forecast in the context of the record 1979 flood, which caused damages,
but was not catastrophic. With the 1997 crest expected only a few inches higher than the
record set in 1979, many expressed relief rather than concern, e.g., “We survived that one
OK, how much worse can afew inches be?” Second, decision makers did not understand
the uncertainty associated with the forecast. Flood forecasts are extremely uncertain,
especially forecasts of record floods for which there is no experience. Forecasters issued
a gquantitative forecast with a simple qualitative warning about uncertainty. Hence, many
decision makers interpreted the forecast uncertainty in their own terms. Some viewed the
forecast asacelling, i.e., “the flood will not exceed 49 feet.” Others viewed the forecast
as uncertain and placed various ranges on uncertainty on the forecasts, ranging from 1 to
6 feet. The historical record showed that flood crest forecasts were, on average, off by
about 10% of the forecast.

On April 22, 1997 at Grand Forks the Red River crested at 54 feet, inundating the
communities of Grand Forks, ND and East Grand Forks, Minnesota and causing up to $2
billion in damages. In the aftermath of the flood, local, state, and national officials
pointed to inaccurate flood forecasts as a cause of the disaster. With hindsight, a more
reasoned assessment indicates that by any objective measure the accuracy of the forecasts
was not out of line with historical performance. Instead, decision makers failed to
understand the meaning of the prediction both in terms of what was being forecast and

the uncertainty associated with it.

A significant literature exists on communication of uncertain information, some
based on experience in the sciences and much more (it seems) from the disciplines of
communication, psychology, and sociology.*® The implications of this literature range

from the straightforward: “statistics expressed as natural frequencies improve the

14 For adetailed evaluation of the role of forecastsin responses to the 1997 Red River floods see Pielke
(1999).

15 See for example, related to the atmospheric and earth sciences, Dow and Cutter (1998), Baker (2000),
Mileti and Sorenson (1988), Nicholls (1999), Glantz (2000) and from psychology, Hoffrage et al. 2000,

Wallsten et al. 1993, Erev et a. 1993, GonzalezVallgjo et a. 1994, Konold 1989, Wallsten et al. 1986,

Hamm 1991.
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statistical thinking of experts and nonexperts alike” (Hoffrage et a. 2000) to the more
challenging: “probability expressions are interpreted differently by speakers and
listeners’ (Fillenbaum et al. 1991). However, it is clear that the substantial research on
communication of uncertainty has not been well-integrated with the research in the earth
and environmental sciences that seeks to understand and describe uncertainties relevant

to decision making.

Under standing Predictability

Consider again the poker example. With perfect knowledge of a card substitution
process engineered by aless-thanhonest dealer, one would thus be able to quantify
completely and accurately the associated uncertainties in future hands. But this situation
is quite different from most cases that we find in the real world of modeling and
prediction in the environmental sciences. In thereal world, systems are open and there
are fundamental limitsto predictability. And perhaps surprisingly many scientific efforts
to divine the future proceed without an adequate understanding of the limits to
predictability. In addition to the aleatory and epistemic uncertainties discussed above,
there are a number of other reasons for limits to predictability, anong these are
sensitivity toinitial conditions, complexity, and human agency.

First, predictability is limited because knowledge of the future depends upon
knowing the present, which can never be completely or accurately characterized. For
example, weather forecasts depend upon knowing the present state of the atmosphere and
then projecting forward future behavior of the atmosphere, based on computer models. A
result of the dependence on these “initial conditions” is that small changesin theinitial
conditions can subsequently to large differences in outcomes. Knowledge of initial
conditions is obtained with instruments, in weather prediction these can include balloons,
radar, satellites, and other instruments that are subject to measurement errors. But even
without such measurement errors, the smple act of rounding off a decimal can lead to
vastly different outcomes. Popularized as the “butterfly effect,” thisis the fundamental
characteristic of achaotic system with limited predictability (Gleick 1986). Scientists
have established that about 10-14 days is the limit of predictability for westher forecasts.

13
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In many other contexts the same limits hold, but are not as well understood.

Meteorol ogists seek to understand sensitivity to initial conditions by running models
repeatedly with small variations in input data (and sometimes in the model itself) to begin
to understand the sensitivities of model output to initial conditions (e.g., Krishnamurti et
al. 2000).

A second factor is that the environmental sciences phenomena of interest to policy
makers are often incredibly complex and can be the result of interconnected human and
earth processes. Consider nuclear waste disposal (Metlay, this volume). Predicting the
performance of a waste facility 10,000 years into the future depends upon knowing,
among a multitude of other potentially relevant factors, what sorts of precipitation might
be expected at the site. Precipitation is afunction of global climate patterns. And global
climate patterns might be sensitive to human processes such as energy and land use.
Energy and land use are functions of palitics, policy, and socia changes, and so on.
What at first seems a narrow scientific question rapidly spiralsinto great complexity.
One characterization of the concept holds that “a complex system is one whose evolution
isvery senditive to initial conditions or to small perturbations, one in which the number
of independent interacting components is large, or one in which there are multiple
pathways by which the system can evolve” (Whitesides and Ismagilov 1999, p. 89).
Scientists are just being to understand the implications of complexity for prediction (see
Waldrop 1992).

A third factor is the role of human agency. In situations where human decisions
are critical factors in the evolution of the future being predicted (that is to say most every
issue of environmental policy™®), the aggregate record of prediction is poor. Ascher
(1981, p. 247) argues, “unless forecasters are completely ignorant of the performance
record, or are attracted solely by the promotional advantages of the scientific aura of
modeling, they can only be attracted to benefits not yet realized.” The poor performance
of predictions of societal outcomesis consistent across diverse areas that include energy
demand (Keepin 1986), energy supplies (Gautier 2000), population (Cohen 1996),

16 One exception might be the prediction of asteroid impacts on the earth (see Chapman 2000).

14
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elections (Mnookin 2001), corporate financial performance (Dreman and Berry 1995),
macro-economics (CBO 1999), and medicine (Fox et al. 1999). To the extent that
modeled outcomes depend upon some degree of accuracy in predicting factors such as
these, predictability will clearly be limited.

And yet, effective decision making cannot occur without some way to anticipate
the consequences of alternative courses of action. The record of cases where prediction
and modeling contributed to effective decisions is of course large. The practice of
insurance and engineering would not be possible without predictive ability. And more
relevant to present purposes, the apparently successful response to stratospheric ozone
depletion would not have been possible without predictive and diagnostic modeling
(Pielke and Betsill 1998). But understanding (and indeed creating) those situations where
prediction and modeling serves effective decision making is not straightforward, if
simply because questions about the roles of models and prediction in decision arerarely

asked much less answered.

What isa “good” model?

This section focuses on model’ s are a means to produce predictions for decision,
aswell as a social and scientific mechanism that fosters integration of knowledge, and its
potentia use. Thus, the “goodness’ of predictions produced from models can be

understood from two distinct perspectives, product and process.

Prediction as Product

The first and most common perspective is to view models ssmply as generators of
an information product. Often, when amodel is applied to decision problems, it is used
to produce a prediction, i.e., a“set of probabilities associated with a set of future events’
(Fischoff 1994). To understand a prediction, one must understand the specific definition
of the predicted event (or events), as well as the expected likelihood of the event’s (or

events’) occurrence. From this perspective the goal of modeling is simply to develop

15
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“good” predictions (Pielke et al. 1999). Three important considerations in the production

“good” predictions are accuracy, sophistication, and experience.

Accuracy. A critical criterion to be used to assess a prediction is accuracy (Ascher

1979). Accuracy isimportant because “on balance, accurate forecasts are more likely
than inaccurate forecasts to improve the rationality of decison making” (Ascher 1979, 6).
With a few exceptions, once a forecast is produced and used in decision making, few ever
look back to assess its skill (Sarewitz et al. 2000). Measuring the skill of a prediction is
not as straightforward as it might seem. Consider the case of early tornado forecasts. In
the 1880s a weather forecaster began issuing daily tornado forecasts in which he would
predict for the day “tornado” or “no tornado.” After a period of issuing forecasts, the
forecaster found his forecasts to be 96.6% correct — a performance that would merit a
solid “A” in any grade school. But others who looked at the forecaster’ s performance
discovered that smply issuing a standing forecast of no tornadoes would result in an
accuracy of 98.2%! This finding suggested that in spite of the high degree of correct
forecasts, the forecaster was providing predictions with little skill — defined as the
improvement of a forecast over some nai' ve standard -- and in fact could result in costs
rather than benefits.!” Simply comparing a prediction with actual events does not provide
enough information with which to evaluate its performance. A more sophisticated
approach is needed. Thus, predictions should be evaluated in terms of their “ skill,”
defined as the improvement provided by the prediction over a naive forecadt, i.e., such as
that which would be used in the absence of the prediction.*®

17 For example, see Pielke et al. (2000) which discusses a methodol ogy to eval uate catastrophe models
used by theinsurance industry.

18 Theterm “skill” isjargon, however the notion of evaluating predictions against anai' ve baselineis
fundamental to the evaluation of weather forecasts and financial forecasts (such as expected mutual fund
performance). For forecasts that are probabilistic, rather than categorical, the evaluation of skill can be
somewhat more complicated, but adheres to the same principles. See Murphy (1997) for atechnical
discussion of the many dimensions of predictive skill. Aswell, there are other dimensions of predictive
“goodness’ that are central to evaluation of itsrolein decision making — including comprehensibility,
persuasiveness, usefulness, authoritativeness, provocativeness, importance, value, etc., foe discussion see
Ascher (1979), Armstrong (1999) and Sarewitz et al. (2000).
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Sophistication. Decision makers sometimes are led to believe that sophisticationof a
prediction methodology lends itself to greater predictive skill, i.e., given the complexity
of the world a complex methodology should perform better. In redlity, the situation is no
so clear-cut. An evauation of the performance of complex models has shown that
“methodological sophistication contributes very little to the accuracy of [predictions]”
(Ascher 1981, p. 258, see also Keepin 1986). A lesson for decision makersisthat a
sophisticated prediction methodology (or by extension, the resources devoted to
development of predictions) does not necessarily guarantee predictive success. Because
complex models often require significant resources (computation, human, etc.), atrade-
off invariably results between producing one or a few realizations of the complex model
and many runs of asimpler, lessintensive version of the model. For instance, the U.S.
National Assessment of Climate Change used only two scenarios of future climate due to
computation limitations (NACC 2000). For many decision makers, having an ability to
place modeled output into the context of the entire “model-output space” would have
been more useful than the two products that were produced, largely without context. This

isan example of confusion between consolidative and exploratory modeling.

Experience. In weather forecasts, society has the best understanding of prediction asa
product. Consider that in the United States the National Weather Service issues more
than 10 million predictions every year to hundreds of millions of users. This provides a
considerable basis of experience on which users can learn, through trial-and-error, to
understand the meaning of the prediction products that they receive. Of course, room for
confusion exists. People can fail to understand predictions for record events for which
the is no experience, asin the Red River case, or even aroutine event being forecast (e.g.,
70% chance of rain). But experience is essential for effective decision making, and most
decision makers have little experience using models or their products. Erev et a. (1993,

92) provide a useful analogy:
Consider professional golferswho play asif they combine information concerning distance and
direction of the target, the weight of the ball, and the speed and direction of thewind. Now
assume that we ask them to play in an artificial setting in which all the information they naturally
combinein thefield is reduced to numbers. It seems safe to say that the numerical representation

of the information will not improve the golfer’s performance. The more similar are the artificial
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conditions we create to the conditions with which the golfers are familiar, the better will be their
performance. One can assume that decision making expertise, like golf expertise, isimproved by

experience, but not always generalized to new conditions.

The importance of experience does not necessarily limit the usefulness of models and
their products in decision making, but its does underscore the importance of the decision

context as a critical factor in using models (cf. Stewart et a. 1997).

A range of experience illustrates misunderstandings of prediction as products are
fundamental to decision makers efforts to effectively use predictions. Considering the
following:
Global climate change (Rayner, 2000). Debate has raged for more than a decade
about the policy implications of possible future human caused changes in climate.
This debate has been about “global warming” expressed in terms of a single global
average temperature. But global average temperature has no actual meaning, and thus
policy advocates have sought to interpret that “event” in different ways, ranging from
pending global catastrophe to benign (and perhaps beneficial) change. The issue of
uncertainty compounds the issue. As aresult, predictive science has been selectively
used and misused to justify and advance the existing objectives of participantsin the
process (Sarewitz and Pielke 2000).
Asteroid impacts (Chapman, 2000). In recent years scientists have increased their
ability to observe asteroids and comets that potentially threaten the Earth. In this
case, the “event” is clear enough — possible extinction of life on Earth if alarge
asteroid slams into the earth — and its prediction seemingly straightforward,
uncomplicated by human agency. But scientific overreaction to the discovery of
1997 XF11 and the associated prediction that it could strike the Earth on 26 October
2028 illustrates that understandings of uncertainty are critical (Chapman 2000). In
this case, hype might have damaged future credibility of scientists who study this
thresat.

These examples, and others, each illustrate the difficulties associated with understanding

prediction as a product. At the same time, the cases also illustrate that to improve the use

of prediction it would be insufficient to simply develop “better” predictions, whether

more precise, e.g., aforecast of a49.1652 flood crest at East Grand Forks, more accurate,
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e.g., aforecast of a51 foot crest, or more robust, e.g., a probabilistic distribution of
various forecast crest levels. While better predictions are in many cases more desirable,
better decisions require attention to the broader prediction process. From this standpoint,
better predictions may be neither necessary nor sufficient for improved decision making,
and hence desired outcomes. To effect better decisions, it is hecessary to understand

prediction as a process.

Prediction as Process

A second perspective is to view modeling as part of abroader prediction process.
This includes the participants, perspective, institutions, values, resources, and other
factors that together determine policies for the prediction enterprise and how the
prediction enterprise contributes to public demands for action or tools respect to the
issues that they bring to the attention of decision makers. From this perspective the goal
of the prediction enterprise is good decisions. Modeling, due to its (potentially)

integrative nature, is an important element of the prediction process.

The successful use of predictions depends more upon a healthy process than just
on “good” information (Sarewitz et al. 2000). Weather forecasts have demonstrably
shown value not because they are by any means “perfect,” but because users of those
predictions have successfully incorporated them into their decision routines. The
prediction process can be thought of as three parallel sub-processes (Sarewitz et al.
2000):

Research Process includes the fundamental science, observations, etc. aswell asforecasters
judgements and the organi zational structure which go into the production of
predictions for decision makers.

Communication Process includes both the sending and receiving of information; aclassic model of
communication is: who, says what, to whom, how, and with what effect.

Choice Process includes the incorporation of predictive information in decision making. Of
course, decisions are typically contingent upon many factors other than
predictions.

Often, some mistakenly ascribe a linear relation to the processes. From the perspective of

benefits to society, these three processes are instead better thought of as components of a
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broader prediction process with each of the sub-processes taking place in paralel, with
significant feedback and interrelations between them.

Peter Drucker has written an eloquent description of the modern organization that
applies equally well the prediction process.

Because the organization is composed of specialists, each with his or her own narrow knowledge
area, its mission must be crystal clear . . . otherwise its members become confused. They will
follow their specialty rather than applying it to the common task. They will each define ‘results
in terms of that specialty, imposing their own values on the organization. (1993, p. 54)

Drucker continues with an apt metaphor.

The prototype of the modern organization is the symphony orchestra. Each of 250 musiciansin
the orchestrais aspecialist, and ahigh-grade one. Yet by itself the tuba doesn’t make music; only
the orchestra can do that. The orchestra performs only because all 250 musicians have the same
score. They all subordinate their specialty to acommon task. (1993, p 55)

In the process of modeling and prediction in support of decision making, success

according to the criteria of any subset of the three processes does not necessarily result in

benefits to society. Consider the following examples.
The case of the Red River floods presented earlier illustrates that a technically skillful
forecast that is miscommunicated or misused can actually result in costs rather than
benefits. The overall prediction process broke down in severa places. No onein the
research process fully understood the uncertainty associated with the forecast, hence
little attention was paid to communicate the uncertainty to decision makers. Asa
result poor decisions were made and people suffered, probably unnecessarily. Given
that this community will to some degree aways depend upon flood predictions, the
situation might be improved in the future by including local decision makersin the
research process in order to develop more useful products (see Pielke 1999).
In the case of earthquake prediction afocus on developing skillful predictions of
earthquakes in the Parkfield region of California brought together seismologists with
local officials and emergency managers (Nigg 2000). A result was better
communication among these groups and overall improved preparation for future
earthguakes. In this case, even though the predictions themselves could not be shown

to be skillful, the overall process worked because it identified alternatives to
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prediction that have led to decisions that are expected to reduce the impacts of future
impacts in this region.
The case of global climate change may be in the early stages of what was documented
in the case of earthquakes (Rayner 2000). Policy making focused on prediction has
run up against numerous political and technical obstacles, meanwhile aternatives to
prediction have become increasingly visible. The prediction process can be said to
work if the goals of climate policy — to reduce the impacts of future climate changes
on environment and society — are addressed, independent of whether century-scale
climate forecasts prove to be accurate (Sarewitz and Pielke 2000).
The case of nuclear waste disposal has aso evolved from one in which decision
making focused first on developing skillful predictions to one in which decision
making focused instead on actions that would be robust under various aternative
futures (Metlay 2000). In this case, the policy problem of storing nuclear waste for a
very long time (and associated uncertainties) was addressed via decision making (i.e.,
engineering), not prediction.

As Robinson (1982, p. 249) observes,

by basing present decisions on the apparent uncovering of future events, an appearance of
inevitability is created that deemphasizes the importance of present choice and further lessens the
probability of developing creative policy in response to present problems. . . [predictions] do not
reveal the future but justify the subsequent creation of that future.

The lesson for decision makers is that one is in most cases more likely to reduce
uncertainties about the future through decision making rather than through prediction,

again leading us back to issues associated with the broader prediction process.

The criteriafor evaluating the “goodness’ of amodel are thus directly related to
the purposes for which amodel isto be used. A consolidative model will most likely be
evaluated based on the accuracy of its output, whereas an exploratory model could easily
succeed even if its results are highly inaccurate (Bankes 1993). Similarly, a model
designed to advance understanding should be evaluated by a different set of criteria than
amodel designed to provide reliable products useful in decision. For society to realize
the benefits of the resources invested in science and technology of scientific prediction,

the entire process must function in a healthy manner, just like the sections of Drucker’s
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orchestra must perform together to make music. Each sub-process of the broader
prediction process must be considered in the context of the other sub-processes; they

cannot be considered in isolation.

Conclusion: For Better Decisions, Question Predictions

The analytical vignettes presented in this paper begin to highlight some of the
shared characteristics of healthy decision processes for the use of model products,
particularly predictions. One characteristic is the critical importance of decision makers
having experience with the phenomena being predicted, as well as experience with the
predictions themselves. The less frequent, less observable, less spatially discrete, more
gradual, more distant in the future, and more severe a predicted phenomenon, the more
difficult it is to accumulate direct experience. Where direct societal experience is sparse
or lacking, other sources of societal understanding must be developed or the prediction
process will not function as effectively. Science alone and prediction in particular do not
create this understanding.

More broadly, what is necessary above al is an institutional structure that brings
together those who solicit and use predictions with scientists throughout the entire
prediction process, so that each knows the needs and capabilities of the others. It is
crucia that this process be open, participatory, and conducive to mutual respect. Efforts
to shield expert research and decision making from public scrutiny and accountability

invariably backfire, fueling distrust and counterproductive decisions.

While efforts to predict natural phenomena have become an important aspect of
the earth and environmental sciences, the value of such efforts, as judged especially by
their capacity to improve decision making and achieve policy goals, has been questioned
by a number of constructive critics. The relationship between prediction and policy
making is not straightforward for many reasons, among them:

Accurate prediction of phenomena may not be necessary to respond effectively to
political or socioeconomic problems created by the phenomena (for example, see
Landsea et al. 1999).
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Phenomena or processes of direct concern to policy makers may not be easily
predictable. Likewise, predictive research may reflect discipline-specific scientific
perspectives that do not provide "answers' to policy problems, which are complex
mixtures of facts and values, and which are perceived differently by different policy
makers (for example, see Herrick and Jamieson 1996).
Necessary political action may be deferred in anticipation of predictive information
that is not forthcoming in atime frame compatible with such action. Similarly, policy
action may be delayed when scientific uncertainties associated with predictions
become politically charged (in the issue of global climate change, for example; see
Rayner and Malone 1998).
Predictive information also may be subject to manipulation and misuse either because
the limitations and uncertainties associated with predictive models are not readily
apparent, or because the models are applied in a climate of political controversy and
high economic stakes.
Emphasis on predictive products moves both financial and intellectual resources away
from other types of research that might better help to guide decision making (for
example, incremental or adaptive approaches to environmental management that
require monitoring and assessment instead of prediction; see Lee 1993).
These considerations suggest that the usefulness of scientific prediction for policy
making and the resolution of societal problems depends on relationships among several
variables, such as the timescales under consideration, the scientific complexity of the
phenomena being predicted, the political and economic context of the problem, and the

availability of alternative scientific and political approaches to the problem.

In light of the likelihood of complex interplay among these variables, decision makers
and scientists would benefit from criteria that would alow them to better judge the
potential value of scientific prediction and predictive modeling for different types of
political and social problems related to Earth processes and the environment. Pielke et al.
(1999) provide the following six guidelines for the effective use of prediction in decision
making.
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Predictions must be generated primarily with the needs of the user in mind. For
stakeholders to participate usefully in this process, they must work closely and
persistently with the scientists to communicate their needs and problems.
Uncertainties must be clearly articulated (and understood) by scientists, so that users
understand their implications. Failure to understand uncertainties has contributed to
poor decisions that then undermine relations among scientists and decision makers.
But merely understanding the uncertainties does not mean that the predictions will be
useful. If policy makers truly understood the uncertainties associated with predictions
of, for example, global climate change, they might decide that strategies for action
should not depend on predictions (cf., Rayner and Malone 1998).

Experience is a critically important factor in how decision makers understand and use
predictions.

Although experience is important and cannot be replaced, the prediction process can
be facilitated in other ways, for example by fully considering alternative approaches
to prediction, such as no-regrets policies, adaptation and better planning and
engineering. Indeed, alternatives to predictionmust be evaluated as a part of the
prediction process.

To ensure an open prediction process, stakeholders must question predictions. For
this questioning to be effective, predictions should be s transparent as possible to the
user. In particular, assumptions, model limitations, and weaknesses in input data
should be forthrightly discussed. Even so, lack of experience means that many types
of predictions will never be well understood by decision makers.

Last, predictions themselves are events that cause impacts on society. The prediction
process must include mechanisms for the various stakeholders to fully consider and
plan what to do after a prediction is made.

When the prediction process is fostered by effective, participatory institutions,
and when a healthy decision environment emerges from these ingtitutions, the products of
predictive science may even become less important. Earthquake prediction was once a
policy priority; now it is considered technically infeasible, at least in the near future. But

in California the close, institutionalized communication among scientists, engineers, state
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and local officials, and the private sector has led to considerable advances in earthquake
preparedness and a much-decreased dependence on prediction. On the other hand, in the
absence of an integrated and open decision environment, the scientific merit of
predictions can be rendered politically irrelevant, as has been seen with nuclear waste
disposal and acid rain. In short, if no adequate decision environment exists for dealing
with an event or situation, a scientifically successful prediction may be no more useful

than an unsuccessful one.

These recommendations fly in the face of much current practice where, typically,
policy makers recognize a problem, scientists then go away and do research to predict
natural behavior associated with the problem, and predictions are finally delivered to
decision makers with the expectation that they will be both useful and well used. This
sequence, which isolates prediction research but makes policy dependent on it, rarely

functions well in practice.

Y et once we have recognized the existence of a prediction enterprise, it becomes
clear that prediction is more than a product of science. Rather, it isacomplex process.
This process includes all the interactions and feedbacks among participants, perspectives,
institutions, values, interests, resources, decisions, and other factors that constitute the
prediction enterprise. From this perspective, the goal of the prediction enterprise is good
decisions as evaluated by criteria of public benefit. The value of predictions for
environmental decision making therefore emerges from the complex dynamics of the
prediction process, and not smply from the technical efforts that generate the prediction
product (which are themselves an integral part of the prediction process). All the same, it
is the expectation of a useable prediction product that rationalizes the existence of the

prediction enterprise. This expectation turns out to be extremely difficult to fulfill.

This paper has presented only afew of the many considerations important to
understand if scientific modeling and prediction are indeed to fulfill public expectations
of the contributions of science in addressing environmental policy problems. Thereis

considerable need for debate and discussion, supported by rigorous knowledge, on the

25



Cary Conference Discussion Draft — R. Pielke, Jr. 2-28-01

proper role of modeling and prediction in decision, rather than simply assuming what that
role should be. However, one clear implication of the few considerations presented in
this paper is that the belief that modeling and prediction can simultaneously meet the
needs of both science and decision is untenable. For ecosystem science, there fortunately
exists abody of experience in understanding, using and producing predictions across the

sciences on which to build, to the potential benefit of both research and policy.
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