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Abstract

In this paper, our contributions are two-fold: First, we
enhance the Min-Min and Sufferage heuristics under three
risk modes driven by security concerns. Second, we propose
a new Space-Time Genetic Algorithm (STGA) for trusted
job scheduling, which is very fast and easy to implement.
Under our new model, a job can possibly fail if the site se-
curity level is lower than the job security demand. e con-
sider three security-driven heuristic modes. secure, risky,
and f-risky. The secure mode always dispatches jobs to se-
cure sites meeting the job security demands. The risky mode
allocates jobs to any available resource site, taking what-
ever therisk it may face. The f-risky mode triesto limit the
risk to be at most certain probability f. Our extensive simu-
lation results indicated that the proposed STGA is highly ef-
fectivein scheduling two types of practical workloads: NAS
(Numerical Aerodynamic Smulation) and PSA (parameter-
sweep application). The STGA outperforms the Min-Min
and Sufferage heuristics under threerisk modes, in terms of
a wide range of performance metrics including makespan,
average response time, site utilization, slowdown ratio, and
job failurerate.

Keywords: Grid computing, on-linejob scheduling, hetero-
geneous computing, security-driven heuristics, genetic al-
gorithms, NAS benchmark, parameter-sweep applications,
and distributed supercomputing.

1. Introduction

Grid computing will eventually become commaodities
that are transported among different Grid sites (which can
be large supercomputing centers or just small clusters) and
executed by the sites in a transparent manner [4, 6]. Large-
scale Grid computing demands a judicious job manage-
ment system to address the security and privacy concerns
[5, 9, 10, 14]. A job dispatched to a remote site may
fail due to experiencing some infections or malicious at-
tacks there. Specifically, a practical job scheduler must be
security-driven in that it must consider the risk involved
in dispatching jobs to remote sites. Unfortunately, exist-
ing Grid scheduling algorithms largely ignore this issue,
making their applicability in a realistic environment rather
doubtful.

Grids are most formed with resources owned by many
organizations and thus are not dedicated for certain users.
As such, jobs that are dispatched to a remote site can pos-
sibly experience some security and reliability problemsthe
remote site may be intruded by some malicious users such
that the jobs it is executing are destroyed. Simply put, such
a situation can be modeled by a parameter calleddbtie
rity level (SL) that a Grid site can offer to remote jobs. Cor-
respondingly, a job can be associated witkeeurity de-
mand (SD) value, so that if SD is not greater than SL, the
job can expect to finish successfully; otherwise, the job may
fail and has to be restarted on the same site or somewhere
else [25, 26]. Here, as in nowadays real-life Grid comput-
ing usage scenarios, a job is an atomic unit of program exe-
cution that is neither malleable nor moldable.

It should be noted that this generic security model is used
for illustration only and the parameters SL and SD could
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sum of several system security parameters (e.g., job execu- e f-risky mode: Allocate jobs to available sites to take

tion history, security levels of defense tools employed, etc.). at mostf risk, wheref is a probability measure with
Indeed, as detailed in [3, 24] by Azzedin and Maheswaran, f = 0 for the secure mode anfi= 1 (i.e., 100%) for
SL and SD can be derived from many practical security or the risky mode.

trust” indices such as the “offered trust levels” and ‘re- Our preliminary performance study indicated that these

quested trust levels”. In our previous Stl.de [23], we have v, heyristics do perform satisfactorily under various risky
also designed a fuzzy logic based trust index that can also

b di - hedull del i qpionditionsto match with user job demands in security assur-
DE USed In our securily-aware scheduling model consIderetynce  However, their performance is not stable in the per-
in the current paper.

spective of different types of workloads. Furthermore, we

. With a security-aware job.execution model, job schedul- developed a new genetic algorithm (GA) to meet two con-
ing becomes more challenging. Unfortunately, well-known flicting goals: (1) to have the ability to generate high qual-

scheduling approaches for Grid computing largely ignore i, solutions under a security-driven execution model; and
this security fa(_:tor, with only a handful of exceptpns. Mo§t (2) to have a low time-complexity so that it can be used in a
notably, Azzedin and Maheswaran [3] suggested integratingp, 5 ctical environment. GAs are effective in generating good
the “trust” concept into Grid resource management. They gcheqyling solutions [2, 11, 18, 19]. However, GAs are too
observed that if jobs are dispatched solely based on thegiq, to be used as online scheduling tools. Thus, we pro-
“trust-worthiness” of sites, then the security overheads CaNpose a novel GA, called thgpace-Time Genetic Algorithm

be very high. Thus, their research objective is to minimize (STGA). Specifically, in each round of online scheduling,
those overheads. In our study, however, we focus on howg,r STGA doesot start from scratch in that it uses histor-
the risk brought about by security concerns affects the over-ico| scheduling results to generate its chromosome popula-
all performance of the jobs in the system in terms of slow- {ions The distinctive feature of this new approach is that the
down ratio, makespan, site utilization, and failure rate. STGA then needs to execute only very few generations to

There have been some previous research efforts rexome up with good solutions, making it suitable to be used
lated to our study. Humphrey and Thompson [16] pro- in an online environment.

vided a very useful discussion on various usage models for Essentially, our new GA performs evolutionary compu-
security-aware Grid computing. Abawajy [1] suggested a tation not just over “space” (i.e., scheduling solution space)
new scheduling approach call@istributed Fault-Tolerant  pyt also over “time” (i.e., its previous scheduling results).
Scheduling (DFTS) to provide fault-tolerance to job exe- e find that this approach makes much sense in a real-life
cution in a Grid environment. The DFTS algorithm works environment because a Grid computing system is expected
by replicating jobs at multiple sites in a careful man- (g receive similar job demands (instead of totally random
ner so as to guarantee successful job executions. Anothegach time) from the users. Our extensive simulation results
related previous research effort is by Dogan and Oz-jngjcated that the proposed STGA is highly effective in
guner [12] who suggested a novel scheme for minimizing scheduling two practical workloads: NASmerical Aero-
the failure rates of parallel applications on a dedicated het'dynam'c Simulation) [13] and PSA parameter-sweep ap-
erogeneous computing platform. plications) [8], and outperforms the Min-Min and Suffer-

In this paper, we first consider modifying the Min-Min  age heuristics under the three risk modes.
and Sufferage scheduling heuristics to establish the secure The rest of the paper is organized as follows: In Sec-
scheduling framework [7]. These two heuristics are attrac- tion 2, we describe in detail our security and risk models
tive choices for practical implementations, because they areand the modified Min-Min and Sufferage heuristics. Sec-
fast and, as such, are suitable for online scheduling useson 3 contains the discussions on our proposed new STGA.
in a real environment. To investigate their effectiveness in \We provide our extensive simulation results and their inter-
matching the SL of Grid sites to SD of jobs, we have devel- pretations in Section 4. Finally in Section 5, we conclude
oped three risk modes for each of the two heuristics: with some final remarks and suggest future research direc-

. , tions.
e Securemode: Allocate jobs only to those sites that can

definitely satisfy the security requirements from the O .
users. A job is allocated to an available site, only if the 2. %’Stem Model and Security-Driven Heuris-
condition SD< SL is met. The secure mode is consid- ICS

ered as a conservative way of scheduling jobs. . - . :
y gl We consider a periodic online scheduling system as mod-

e Risky mode: Allocate jobs to any available Grid sites eled in Figure 1. Modeling a real-life situation, jobs are ac-
and thus take all possible risks at the resource sites.cumulated and then scheduled in batches [17]. Thus, the
The risky mode is considered as an aggressive way ofscheduler has to be very efficient such that it will not de-
scheduling jobs. lay the execution of jobs. We cannot afford to use an offline

0-7695-2312-9/05/$20.00 (c) 2005 |IEEE



algorithm such as simulated annealing [20] or a traditional
GA [19]. Jobs are independent in that there is no commu-
nication among them. The scheduling objective is to mini-
mize the overall execution time, called timakespan which

is defined as maxFT(J;)}, where FTJ;) is the finish time

of job J;.
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Figure 1. On-line job scheduling system
model.

However, a job may falil if it takes the risk of being exe-
cuted on a site with a security level (SL) lower than its se-
curity demand (SD). Specifically, we use the following fail-
ure model: Thdailure probability of executing a job, with
a job security demand SD on a site with security level SL,
is modeled by an exponential distributed failure function as
follows:

if SD < SL

fso>s. =D

. 0
P(fail) = { 1 _ ¢—A(SD-SL)

It should be noted that using such a failure model is just
for illustration only. We can substitute the above model by
any reasonable failure scheme. We also assume fail-stop e
ecution. That is, if a job fails on a site, then it will be re-
scheduled to restart from the beginning at another site tha
has an SL greater than the SD, i.e., itis absolutely safe. Tha
is, the scheduler will not allow a failed job to take any risk
again.

We consider two well-known heuristics, namely Min-
Min and Sufferage [22]. We briefly introduce them below.
In the following, ETC Expected Time to Complete) is the
expected finish time of a job as determined by the job sub-
mission system.

1. Min-Min heurigtic: For each job, the Grid site that
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(left: makespan = 7s) and Sufferage
(right: makespan = 6s)

Figure 2. A simple scheduling example using
the Min-Min and Sufferage heuristics.

2. Sufferage heuristic: The Sufferage heuristic is based
on the idea that better scheduling results could be gen-
erated by assigning a site to a job that would “suffer”
most in terms of ETC if that particular site is not as-
signed to it. Specifically, the sufferage value of a job is
the difference between its second earliest completion
time (on some sit&,) and its earliest completion time
(on some sites,). That is, usingS,, will result in the
best completion time, while assigning.$9 will result
in the second best. For example, as we can see from
Figure 2(a), jobJs will suffer the most if it does not
get scheduled to sit8;, and thus, it is selected first.
The other two jobs are similarly scheduled.

We consider threeisk modes for each of the above two
heuristics, according to different risk level experienced. As
illustrated in Figure 3, a scheduler is considereseasre, if
it always schedules a task to a completely safe site (i.e., with
SD < SL). That s, it does not allow a task to take any risk.
On the other hand, a scheduler is consideratisag if it ig-

nores the risk factor completely (i.e., it sets its tolerance of

Probability of failure to be 1 (100%)). Effectively, the orig-

gnal versions of Min-Min and Sufferage heuristics are con-
sidered risky. We also consider an intermediate risk level in
that the scheduler will allow a task to take the risk of exe-
cuting on a site that has SB SL, provided that the proba-
bility of failure is assured to be less thgnWe call such a
schedulerf-risky.

A Fast Space-Time Genetic Algorithm

Genetic algorithms (GAs) have been widely used to

gives the earliest ETC is identified first. Then the job tackle many difficult optimization problems. A GA, being
that has the minimum earliest ETC is selected and thena search technique, has a very unique feature—it maintains
assigned to the identified Grid site. For example, as cana pool of potential solutions, called chromosomes, and then
be seen in Figure 2(a), jaly has the smallest value of tries to “reproduce” new solutions through randomly com-
earliest ETC and thus it gets scheduled first to Site bining the “good features” of existing solutions. This ex-
The remaining two jobd; andJs are similarly sched-  ploratory searching step is achieved by using the crossover
uled. operator, which works by randomly exchanging portions
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As in a traditional GA, the crossover and mutation oper-

Risk scale:

0 P 1100%) ators are applied as governed by the crossover and muta-
L P(f']) - o '1(100 tion probabilities. The whole process is repeated a number
P(fail)=0 +————— wil) < _— ( fail) <= %) . . . . .
Seore FRisky Risky of times, which is called the number of generations (itera-
tions).

The crux of our new approach is illustrated in Figure 5.
In general, starting from a randomly generated initial pool
of solutions (called the initial chromosome population), the
quality of the best solution in the pool is usually quite low.
Over a number of generations, the solution quality gradu-
ally improves. Thus, the question is how we can skip the

of two chromosomes [19]. Crossover operation searchednitial phase of struggling with a pool of not-so-good solu-
through the possible solution space. Another important op-{ions and start the search closer to the convergence point.
erator is mutation, which works by randomly changing one OUr answer to this question is to make us@mér schedul -

of the genes in a chromosome. Mutation operation leads the"d knowledge-the scheduling results of previous batches.
search out of a local optimum, in the hope of getting an even
better solution. Finally, there is a selection process—remove

the poor solutions (as indicated by their low fitness values) SQ‘j;'fg“ 4 staﬁ:ﬁm
and replace them by the duplicates of the best solutions. In

our implementation, a value-based roulette wheel schema

is used for selection. This schema probabilistically gener-  Generate random
ates new population. Elitism, the property of guaranteeing i population ™
the best solution to remain in the population is also imple- GA
mented [19].

Typically, a GA is composed of two main components,
which are problem dependent: the evaluation function and
the encoding schema. The evaluation function measures the
quality of a particular solution. Each solution is associated
with a fitness value, which, in the job scheduling problem, is
the completion time of the schedule represented by the so-
lution. In this case, the smallest fithess value represents the
best solution. The efficiency of a GA depends largely on the
encoding scheme. In the job scheduling problem, the encod-
ing scheme is illustrated in Figure 4.

Figure 3. The concept of three risk levels in
defining operational modes for security con-
trol.

r‘\ Good
solution

is found

] o Number of
_>| STGA le— = Iterations

Figure 5. The difference between conven-
tional GA and STGA in terms of solution qual-

ity improvement at the starting point on the

evolution path.

The justification of this approach is that the workload
submitted to a practical Grid computing platform usually
has some time correlation or temporal locality. That is, the
bl Job2  Job3  Jobd  JobS  Job6 Encoded solution jobs submiFted previously vyould appear aga_in in the near

[ Site3 [ Site2 [ Site 6 [ Site3 [ Site7 [ Site 1 | = (326571) future. For instance, a physics researcher trying to generate
some simulation data today would very likely try again to-
morrow or in the near future. Thus, in our proposed STGA,
we keep a history table storing the job specifications and the
schedules. Then, such historical data on scheduling could
be used to form the initial population when the GA is in-
voked.

Specifically, in each entry of the lookup table, the input
of each entry contains three parameters: (1) the next avail-

Here, each chromosome is an array of numbers with eachable times of sites, (2) job execution time matrix, and (3)
array index representing a job and the corresponding ar-job security demands. The similarity between the new input
ray element represents the site assignment for that job. Thgobs and each entry is the average similarity for the three
crossover operator is then just a random swapping of twoparameters. We map each parameter into a one-dimensional
portions of two arbitrarily selected chromosomes. Note that vector, and then we use the following vector comparison
the crossover point is randomly chosen. Mutation is definedmethod to calculate the similarity for each parameter. Sup-
as randomly changing the site assignment of a randomly sepose twok-element row vectora = (a1, aq,...,ax) and
lected job in an arbitrary chromosome to some other site.b = (b1, bo, ..., bx), the similarity between vectoes and

Figure 4. A sample chromosome encoding a
possible solution to the job scheduling prob-
lem.
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b is given by:
iy llai bl

max{max{a; }, max{b; } }

Similarity(a,b) = 1 — (2)

Because such previous scheduling results were good so
lutions to similar problems, the initial population formed
will then be of a moderately high solution quality. Thus, our
proposed STGA does not only perform evolutionary search-
ing over “space” (i.e., the solution space as manifested by
the chromosome population) but also over “time” (i.e., the
historical scheduling result table). The overall scheduling
mechanism of our proposed STGA is illustrated in Figure 6.
The initial populations of the STGA also include those ran-
domly generated solutions to guarantee enough diversity. In
the simulation experiments, we use the Min-Min and Suf-
ferage heuristics to a fixed number of training jobs to gener-
ate the initial lookup table entries. In real-life applications,
the initial lookup table could be built from the beginning.
The LRU (Least Recently Used) algorithm is adopted to up-
date the entries in the lookup table.

Lookup table
Input pararneters
(lErE o HEE)

(HIFHE )

Solution
(2143..892)
(1253...223)

(2346_345) l

(12354.6023)
(©7851...9160)

One batch jobs

N

bk it )

Random
Solution
Generator

Final solution
(12816...6023)

(26708...7843)

Tnitial population

Figure 6. The proposed new space-time ge-
netic algorithm (STGA) for trusted online
scheduling.

4. Simulation Results over the NAS and PSA
Wor kloads

In this section, we first describe in detail the performance

e Average response time: Denote the total number of
simulated jobs agv, and denote the completion time
for a single jobJ; asc;, the arrival time as;, the av-

N (e
erage response time is definedgsﬂg\","i’).
Makespan: Defined as mafe; }.

Sowdown ratio: Denote the start time for a single
job J; asb;, the average waiting time is defined as:
N .

w The slowdown ratio is defined as the ra-
tio between the average response time and the average
waiting time. This metric indicates the average con-

tention experienced by a job. That is, we have:

N
Slowdown Ratio= Zijjl(cz —a)/N (3)
ie1(ci = b)) /N

e Number of risk-taking jobs Niisk: When sites provided
security level cannot satisfy the jobs security demand,
Nrisk counts the number of jobs that are running on

such kinds of sites.

Number of failed jobs Nz : Job execution may fail ow-
ing to insecure resource sites appliddy counts the
number of failed and rescheduled joB&,; is bounded
above byNyisk.

Site utilization: Defined by the percentage of process-
ing power allocated to user jobs out of total processing
power available at a selected Grid site.

4.2. TheNASand PSA Workloads

In order to gain more practical insights into the effective-
ness of the scheduling approaches, we use two types of re-
alistic workloads in a potentially risky Grid environment.

NAS traceworkloads: We use three months accounting
records for the 128-node iPSC/860 located in the Numer-
ical Aerodynamic Simulation (NAS) Systems Division at
NASA Ames Research Center. This trace contains 92 days
of data, gathered in year 1993. For testing the performance
of the heuristics under a high-throughput Grid environment,
the 92 days trace data is proportionally squeezed to 46 days.
We map the 128 nodes to 12 Grid sites—four of the sites
each contain 16 nodes, and the other eight sites each con-
tain 8 nodes. Our simulations are based on the arrival time,

metrics that we have used in evaluating the effectiveness ofiob size, and runtime data provided by the trace [21]. This

the scheduling algorithms considered in our study (i.e., the
three versions of the Min-Min and Sufferage heuristics, and
our proposed STGA). We then introduce two types of work-
loads and present the simulation results obtained.

4.1. Performance Metrics

To comprehensively evaluate the scheduling perfor-
mance, we have used the following metrics:

0-7695-2312-9/05/$20.

trace was sanitized to remove the user specified informa-
tion and pre-processed to correct for system downtime. De-
tailed information about the characteristics of the trace can
be found in [13].

Parameter-sweep application (PSA) workloads. The
parameter-sweep application is defined as a set of indepen-
dent sequential jobs (i.e., no job precedence) [8]. The inde-
pendent jobs operate on different datasets. A range of sce-
narios and parameters to be explored are applied to the pro-
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gram input values to generate different data sets. The ex-Two concave curves are observed. ThBlin-Min achieves
ecution model essentially involves processiNigndepen- its minimum atf = 0.5. Thef-Sufferage achieves its min-
dent jobs (each with the same task specification, but a dif-imum at f = 0.6. The following assertion is made from
ferent dataset) on/ distributed sites wher# is, typically, this analysis: The optimal f value to achieve the minimum
much larger thad/. Due to space limitations, we can only makespan is in the range of 0.5-0.6, or very close to this

show the scalability results for the PSA workloads. range. Thus, we chooge= 0.5 in all of ourf-risky heuris-
tic simulation experiments. Figure 7(b) shows the makespan
4.3. Simulation Parameters and Settings of the STGA scheduling as a function of the number of evo-

lution iterations. The makespan fluctuates in the first 25 iter-
To address the following two questions: (1) farisky ations, starts to converge at 40 iterations, and converges to

scheduling, why we choose= 0.5 (50%)? (2) In the STGA a flat constant value after 50 iterations. This demonstrates

scheduling, why we choose 100 as the total number of iter-t€ fastness of our STGA. In the rest of our experiments,
ations? We analyze below in Figure 7 the makespan varia- Ve choose a larger number of iterations, say 100 iterations.

tion of the f-risky scheduling ag increases from 0 to 1. Table 1 lists important simulator paramet.ers fr_om the
Similarly, we show the makespan variation of the STGA al- W0 benchmark workloads, most of the configuration and
gorithm, as the total number of iterations increases. workload data supplied by the provider agencies.
Parameter | Value
S BN vy Number of jobs NAS: 16000; PSA: 5000
- || sufterage -Risky ‘ Number of sites NAS: 12; PSA: 20
§ Job arrival rate NAS: Given by trace;
‘E’ 2.0x10° * PSA: 0.008
% ; Job workloads NAS: Given by trace;
g ./ PSA: 20 levels (0-300000)
15x10° : B ‘ Site processing speed | NAS: 8x8 nodes
0.0 0.2 0.4 0.6 0.8 1.0

‘ and 4x 16 nodes;
PSA: 10 levels (0-10)
Site security level 0.4-1.0 (uniform dist.)
(a) Makespan of -Risky heuristics Job security demand | 0.6-0.9 (uniform dist.)
Number of generations| 100
Initial population size | 200

oo Crossover probability | 0.8
2 165000 ] Mutation pl’obablllty 0.01
g X Lookup table size 150
5 160000 Number of training jobs 500
g *X Similarity threshold | 0.8
=
I e e— Table 1. Simulation parameters and their val-
0 50 100 150 200 ues

Number of Iterations in STGA

(b) Makespan of STGA

4.4. Resultsover NAS Trace Workloads
Figure 7. Plots of makespan for two  f-risky

heuristics against increasing risk level f and In this section, we evaluate the performance of the seven
of the STGA against increasing iterations un- heuristic algorithms on the NAS trace workloads. The eval-
der the PSA workloads over 1,000 jobs. uation is based on the performance metrics listed in Sec-

tion 4.1. The simulation results are given for each metric,
followed by a statistical analysis over all metrics.
Figure 8(a) shows the makespan results of the seven
Figure 7(a) shows the makespan results of Min-Min heuristic algorithms. Overall, the STGA has the best perfor-
risky and Sufferagg-risky algorithms as a function of. mance. The two secure mode algorithms perform the worst.

0-7695-2312-9/05/$20.00 (c) 2005 |IEEE



Risky algorithms perform slightly better than tiferisky  secure heuristics have the longest response times. The re-
ones. Roughly 10% improvement of STGA compared with sponse times of two risky heuristics are shorter than those of
risky algorithms is observed. Roughly 15% improvement of the two f-risky heuristics. Overall, the STGA has roughly
STGA is observed, compared with tiferisky algorithms.  improved 50% over the two secure heuristics. The STGA
A much higher 30% improvement is observed in using the has roughly 30% improvement over the tweisky heuris-
STGA, compared with using the secure algorithms. Fig- tics. The STGA improves by 20%, compared with the risky
ure 8(b) shows the number of failed jobs and number of heuristics.

risk-taking jobs. Under a secure mode, inherently, there is

no failure. For the other five algorithms, the STGA and Min-

Min risky algorithms have the largest number of risk-taking ~ Figure 9 shows the site utilization rate. For all seciyfre,
jobs and the largest number of failed jobs. The number ofrisky and risky heuristics, the utilization rate has almost no
failed jobs for f-risky algorithms is half of that of the risky  difference between Min-Min and Sufferage heuristics. As
heuristics. Overall, the numbers of risk-taking jobs are com- indicated by the results of the secure mode algorithms, the
parable for all algorithms. utilization is not balanced among various Grid sites. Some
sites are simply not used. Eight sites among the 12 sites
achieved very high (more than 95%) utilization rates, while
one site has a much lower utilization rate, roughly 20%. The
other 3 sites have not been used at all.

6.0x10°

Makespan (second)
Number of jobs

On the other hand, we can see from the results of the
two f-risky heuristics that their utilization rates are much
balanced among the sites. Fewer sites are not used com-
pared with the secure heuristics. Among the 12 sites, 8
sites achieve high utilization rates, 2 sites achieve relatively
lower utilization rates, and the other 2 sites have not been
used. For the results of the two risky heuristics, owing to
the aggressive nature of this operational mode, no idle site
is observed. Thus, the site usages are much better balanced.
Compared with thef-risky heuristics, more sites achieved
higher utilization rates. The utilization rate of the STGA is
shown in Figure 9(c). The STGA has the most balanced uti-
lization. No idle site is observed, and more sites achieve
high utilization rates. With reference to the utilization rates
of three best-performed algorithms in Figure 9(c), STGA
still achieves slightly higher utilizations compared with the

STGA

(a) Makespan in seconds (b) Numbers of failed and
risk-taking jobs

Slowdown ratio
g
Avg Rsp Tim

STGA
STGA

(c) The slowdown ratio (d) Average response time risky heuristics.
in seconds
Figure 8. Performance results of 6 heuristic A global performance comparison of the 6 security-
a|gorithms and of the STGA for the NAS trace driven heuristics and the STGA algorithm is shown in Ta-
workload. ble 2 under the NAS trace workload. The relative ranking

is determined by comparing the makespan and average re-
sponse time of each algorithm with respect to those of the
STGA. Specifically, we define to be themakespan ratio

Figure 8(c) shows the slowdown ratio results. STGA of a heuristic with respect to the STGA. Similarly, we de-
has the minimum slowdown ratio. We calculate the perfor- fine 3 to be theresponse time ratio of a heuristic with re-
mance improvement factors of the STGA, compared with spect to the STGA. Considering all the performance metrics
other algorithms. The STGA has more than 46% improve- in a holistic manner, the STGA is the best. The two risky
ment compared with two secure heuristics. STGA has morealgorithms have the second place. The tivasky heuris-
than 35% improvement compared with tligisky heuris- tics rank the third. The two secure heuristics have the low-
tics. The STGA has more than 20% improvement over the est among the seven. We conclude that our STGA is the
risky heuristics. Figure 8(d) shows the average responsemost effective scheduling algorithm when real-life work-
times. The STGA has the shortest response time. The twdoads like NAS and PSA are applied.
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(c) An overall comparison of the three algorithms

Figure 9. Site utilization (%) for the NAS trace
workloads.

4.5, Scaling Effects of Workload Size (Number of

Jobs, N)

Heuristics | o [ B Ranking
Min-Min | Secure 1.314| 2.035] 4th
0.5-Risky | 1.157| 1.441| 3rd
Risky 1.094| 1.262| 2nd
Sufferage| Secure 1.307| 2.011| 4th
0.5-Risky | 1.181| 1.555| 3rd
Risky 1.102| 1.275]| 2nd
STGA 1.000| 1.000| 1st

Table 2. Performance comparison of the 6
Heuristics and the STGA on NAS trace work-
loads

10000.

Min-Min f-risky, Sufferagef-risky and STGA are the
three best-performed scheduling algorithms for the PSA
workloads. Thus, the scalability analysis is based on these
three algorithms. Overall, all measured performance met-
rics show a monotonic increasing trend. STGA has the best
performance. The results of Min-Miffi-risky and Suffer-
agef-risky are comparable for all N. The Sufferafjgisky
performs slightly better than the Min-Mif-risky. The per-
formance improvement is within 1%.

Figure 10(a) shows the makespan of these three algo-
rithms. There is 6% improvement of STGA compared with
Min-Min f-risky and Sufferagég-risky. Figure 10(b) shows
both the number of failed jobs and risk-taking jobs. Again,
STGA has fewer jobs taking risks but has more jobs failed
compared with Min-Minf-risky and Sufferagé-risky. One
explanation for this phenomenon is that theisky algo-
rithms set the risk thresholg = 0.5. Thus, even more
jobs are taking risks, fewer jobs fail during execution. Fig-
ure 10(c) shows the slowdown ratios of these three al-
gorithms. Figure 10(d) shows the average response times.
There is roughly 40% improvement of STGA compared
with the other two algorithms for both slowdown ratio and
average response time.

5. Conclusions and Future Research

Security-driven job scheduling is crucial to achieving
high performance in an open Grid computing environment.
However, existing scheduling algorithms largely ignore the
security induced risks involved in dispatching jobs to re-

The more user jobs injected into a Grid system, the mote sites, which are owned by other organizations. In our
higher the workload and the longer the time needed to pro-study, we first devise a security- driven scheduling model
cess the submitted jobs. The performance effects of varyingand then we modify two well-known heuristics to work
the number of simulated jobs are reported in Figure 10. Be-under our new model, which captures various risk levels
cause the number of jobs in the NAS trace workload is fixed, in real-life applications. Under the risky conditions, our
we run experiments only on the PSA workloads. The num- security-driven Min-Min and Sufferage heuristics do per-
ber of simulated jobs varies &6 = 1000, 2000, 5000, and

form well to match the user security demand with the site
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Figure 10. Performance results of 6 heuristic
algorithms and the STGA for the PSA work-
loads with number of jobs N = 1000, 2000,
5000, and 10000.

security assurance provided. However, their performance is

not stable when applying to different types of workloads.

Genetic algorithms were not applied to Grid scheduling
in the past for their slowness in generating good solutions.
We propose a new Space-Time Genetic Algorithm (STGA),
which works by swiftly generating good solutions based on
a pool of previously found solutions. This new STGA al-
gorithm is designed to meet the two conflicting goals: (1)
capable of generating high quality solutions, and (2) capa-
ble of quickly generating solutions.

Based on a statistical analysis, we find that the makespan [€]

of the STGA algorithm is lower bounded by a minimum
time needed to evolve from sufficient crossover and mu-
tation operations. The minimum time can be reached af-
ter 50 evolution iterations in testing on the PSA workloads.
Thus, we suggest training the STGA process for 100 itera-
tions before using the algorithm for scheduling purpose. By
doing so, we have accelerated the STGA solution time sig-
nificantly. This translates to the low overhead experiences
in on-line scheduling of large number of jobs.

Our extensive simulation results indicate that all the
three algorithms scale well with the increase of the total job

0-7695-2312-9/05/$20.

number. For example, to schedule 10,000 jobs with the NAS
trace workload, the makespan of all 7 algorithms are ap-
proximately equal in magnitude. The slowdown ratio and
the average job response time of the STGA algorithm is
only 60% of those required in using the Min-Min and Suf-
ferage heuristics. The only drawback in using the STGA is
its high number of risk-taking jobs experienced. Given the
promising performance of the STGA observed by our Grid
scheduling simulation experiments, we are now working on
the production prototype scheduler based on the security-
driven heuristics and STGA proposed. Apart from this ma-
jor future research avenue, we believe that investigating the
performance of the STGA, when the job execution dura-
tions are unknown a priori is also an important problem
[15].
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