
Security-Driven Heuristics and A Fast Genetic Algorithm for
Trusted Grid Job Scheduling

Shanshan Song, Yu-Kwong Kwok, and Kai Hwang∗

University of Southern California, Los Angeles, CA 90089, USA
{shanshas, yukwong, kaihwang}@usc.edu

Abstract

In this paper, our contributions are two-fold: First, we
enhance the Min-Min and Sufferage heuristics under three
risk modes driven by security concerns. Second, we propose
a new Space-Time Genetic Algorithm (STGA) for trusted
job scheduling, which is very fast and easy to implement.
Under our new model, a job can possibly fail if the site se-
curity level is lower than the job security demand. We con-
sider three security-driven heuristic modes: secure, risky,
and f -risky. The secure mode always dispatches jobs to se-
cure sites meeting the job security demands. The risky mode
allocates jobs to any available resource site, taking what-
ever the risk it may face. The f -risky mode tries to limit the
risk to be at most certain probability f . Our extensive simu-
lation results indicated that the proposed STGA is highly ef-
fective in scheduling two types of practical workloads: NAS
(Numerical Aerodynamic Simulation) and PSA (parameter-
sweep application). The STGA outperforms the Min-Min
and Sufferage heuristics under three risk modes, in terms of
a wide range of performance metrics including makespan,
average response time, site utilization, slowdown ratio, and
job failure rate.

Keywords: Grid computing, on-line job scheduling, hetero-
geneous computing, security-driven heuristics, genetic al-
gorithms, NAS benchmark, parameter-sweep applications,
and distributed supercomputing.

∗ This research was supported by an NSF ITR Research Grant under
contract number ACI-0325409. Corresponding Author: Kai Hwang,
Email: kaihwang@usc.edu, Tel: 213-740-4470, Fax: 213-740-4418.
Y.-K. Kwok participated in this project while he was visiting USC,
on his sabbatical leave from the University of Hong Kong (HKU).
Kwok’s research at USC was also supported by a research grant from
the Research Grants Council of the HKSAR and the 2003-2004 Out-
standing Young Researcher Award given by HKU.

1. Introduction

Grid computing will eventually become commodities
that are transported among different Grid sites (which can
be large supercomputing centers or just small clusters) and
executed by the sites in a transparent manner [4, 6]. Large-
scale Grid computing demands a judicious job manage-
ment system to address the security and privacy concerns
[5, 9, 10, 14]. A job dispatched to a remote site may
fail due to experiencing some infections or malicious at-
tacks there. Specifically, a practical job scheduler must be
security-driven in that it must consider the risk involved
in dispatching jobs to remote sites. Unfortunately, exist-
ing Grid scheduling algorithms largely ignore this issue,
making their applicability in a realistic environment rather
doubtful.

Grids are most formed with resources owned by many
organizations and thus are not dedicated for certain users.
As such, jobs that are dispatched to a remote site can pos-
sibly experience some security and reliability problemsthe
remote site may be intruded by some malicious users such
that the jobs it is executing are destroyed. Simply put, such
a situation can be modeled by a parameter called thesecu-
rity level (SL) that a Grid site can offer to remote jobs. Cor-
respondingly, a job can be associated with asecurity de-
mand (SD) value, so that if SD is not greater than SL, the
job can expect to finish successfully; otherwise, the job may
fail and has to be restarted on the same site or somewhere
else [25, 26]. Here, as in nowadays real-life Grid comput-
ing usage scenarios, a job is an atomic unit of program exe-
cution that is neither malleable nor moldable.

It should be noted that this generic security model is used
for illustration only and the parameters SL and SD could
be composite structure (e.g., vectors) and their settings are
largely administrative issues, which are beyond the scope
of this paper [23, 24]. For instance, the value of SL can
be dynamically managed by a localintrusion detection sys-
tem (IDS) that continuously monitors the execution envi-
ronment to see if there is any malicious code injected into
the system. As such, SL and SD could also be a weighted

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

sum of several system security parameters (e.g., job execu-
tion history, security levels of defense tools employed, etc.).
Indeed, as detailed in [3, 24] by Azzedin and Maheswaran,
SL and SD can be derived from many practical security or
“trust” indices such as the “offered trust levels” and “re-
quested trust levels”. In our previous study [23], we have
also designed a fuzzy logic based trust index that can also
be used in our security-aware scheduling model considered
in the current paper.

With a security-aware job execution model, job schedul-
ing becomes more challenging. Unfortunately, well-known
scheduling approaches for Grid computing largely ignore
this security factor, with only a handful of exceptions. Most
notably, Azzedin and Maheswaran [3] suggested integrating
the “trust” concept into Grid resource management. They
observed that if jobs are dispatched solely based on the
“trust-worthiness” of sites, then the security overheads can
be very high. Thus, their research objective is to minimize
those overheads. In our study, however, we focus on how
the risk brought about by security concerns affects the over-
all performance of the jobs in the system in terms of slow-
down ratio, makespan, site utilization, and failure rate.

There have been some previous research efforts re-
lated to our study. Humphrey and Thompson [16] pro-
vided a very useful discussion on various usage models for
security-aware Grid computing. Abawajy [1] suggested a
new scheduling approach calledDistributed Fault-Tolerant
Scheduling (DFTS) to provide fault-tolerance to job exe-
cution in a Grid environment. The DFTS algorithm works
by replicating jobs at multiple sites in a careful man-
ner so as to guarantee successful job executions. Another
related previous research effort is by Dogan and Oz-
guner [12] who suggested a novel scheme for minimizing
the failure rates of parallel applications on a dedicated het-
erogeneous computing platform.

In this paper, we first consider modifying the Min-Min
and Sufferage scheduling heuristics to establish the secure
scheduling framework [7]. These two heuristics are attrac-
tive choices for practical implementations, because they are
fast and, as such, are suitable for online scheduling use
in a real environment. To investigate their effectiveness in
matching the SL of Grid sites to SD of jobs, we have devel-
oped three risk modes for each of the two heuristics:

• Secure mode: Allocate jobs only to those sites that can
definitely satisfy the security requirements from the
users. A job is allocated to an available site, only if the
condition SD≤ SL is met. The secure mode is consid-
ered as a conservative way of scheduling jobs.

• Risky mode: Allocate jobs to any available Grid sites
and thus take all possible risks at the resource sites.
The risky mode is considered as an aggressive way of
scheduling jobs.

• f -risky mode: Allocate jobs to available sites to take
at mostf risk, wheref is a probability measure with
f = 0 for the secure mode andf = 1 (i.e., 100%) for
the risky mode.

Our preliminary performance study indicated that these
two heuristics do perform satisfactorily under various risky
conditions to match with user job demands in security assur-
ance. However, their performance is not stable in the per-
spective of different types of workloads. Furthermore, we
developed a new genetic algorithm (GA) to meet two con-
flicting goals: (1) to have the ability to generate high qual-
ity solutions under a security-driven execution model; and
(2) to have a low time-complexity so that it can be used in a
practical environment. GAs are effective in generating good
scheduling solutions [2, 11, 18, 19]. However, GAs are too
slow to be used as online scheduling tools. Thus, we pro-
pose a novel GA, called theSpace-Time Genetic Algorithm
(STGA). Specifically, in each round of online scheduling,
our STGA doesnot start from scratch in that it uses histor-
ical scheduling results to generate its chromosome popula-
tions. The distinctive feature of this new approach is that the
STGA then needs to execute only very few generations to
come up with good solutions, making it suitable to be used
in an online environment.

Essentially, our new GA performs evolutionary compu-
tation not just over “space” (i.e., scheduling solution space)
but also over “time” (i.e., its previous scheduling results).
We find that this approach makes much sense in a real-life
environment because a Grid computing system is expected
to receive similar job demands (instead of totally random
each time) from the users. Our extensive simulation results
indicated that the proposed STGA is highly effective in
scheduling two practical workloads: NAS (Numerical Aero-
dynamic Simulation) [13] and PSA (parameter-sweep ap-
plications) [8], and outperforms the Min-Min and Suffer-
age heuristics under the three risk modes.

The rest of the paper is organized as follows: In Sec-
tion 2, we describe in detail our security and risk models
and the modified Min-Min and Sufferage heuristics. Sec-
tion 3 contains the discussions on our proposed new STGA.
We provide our extensive simulation results and their inter-
pretations in Section 4. Finally in Section 5, we conclude
with some final remarks and suggest future research direc-
tions.

2. System Model and Security-Driven Heuris-
tics

We consider a periodic online scheduling system as mod-
eled in Figure 1. Modeling a real-life situation, jobs are ac-
cumulated and then scheduled in batches [17]. Thus, the
scheduler has to be very efficient such that it will not de-
lay the execution of jobs. We cannot afford to use an offline

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

algorithm such as simulated annealing [20] or a traditional
GA [19]. Jobs are independent in that there is no commu-
nication among them. The scheduling objective is to mini-
mize the overall execution time, called themakespan which
is defined as maxi{FT(Ji)}, where FT(Ji) is the finish time
of job Ji.

Figure 1. On-line job scheduling system
model.

However, a job may fail if it takes the risk of being exe-
cuted on a site with a security level (SL) lower than its se-
curity demand (SD). Specifically, we use the following fail-
ure model: Thefailure probability of executing a job, with
a job security demand SD on a site with security level SL,
is modeled by an exponential distributed failure function as
follows:

P (fail) =

{

0 if SD ≤ SL
1 − e−λ(SD−SL) if SD > SL

(1)

It should be noted that using such a failure model is just
for illustration only. We can substitute the above model by
any reasonable failure scheme. We also assume fail-stop ex-
ecution. That is, if a job fails on a site, then it will be re-
scheduled to restart from the beginning at another site that
has an SL greater than the SD, i.e., it is absolutely safe. That
is, the scheduler will not allow a failed job to take any risk
again.

We consider two well-known heuristics, namely Min-
Min and Sufferage [22]. We briefly introduce them below.
In the following, ETC (Expected Time to Complete) is the
expected finish time of a job as determined by the job sub-
mission system.

1. Min-Min heuristic: For each job, the Grid site that
gives the earliest ETC is identified first. Then the job
that has the minimum earliest ETC is selected and then
assigned to the identified Grid site. For example, as can
be seen in Figure 2(a), jobJ2 has the smallest value of
earliest ETC and thus it gets scheduled first to siteS1.
The remaining two jobsJ1 andJ3 are similarly sched-
uled.

(a) ETC matrix of
execution times in
seconds

(b) schedules generated by Min-Min
(left: makespan = 7s) and Sufferage
(right: makespan = 6s)

Figure 2. A simple scheduling example using
the Min-Min and Sufferage heuristics.

2. Sufferage heuristic: The Sufferage heuristic is based
on the idea that better scheduling results could be gen-
erated by assigning a site to a job that would “suffer”
most in terms of ETC if that particular site is not as-
signed to it. Specifically, the sufferage value of a job is
the difference between its second earliest completion
time (on some siteSy) and its earliest completion time
(on some siteSx). That is, usingSx will result in the
best completion time, while assigning toSy will result
in the second best. For example, as we can see from
Figure 2(a), jobJ3 will suffer the most if it does not
get scheduled to siteS1, and thus, it is selected first.
The other two jobs are similarly scheduled.

We consider threerisk modes for each of the above two
heuristics, according to different risk level experienced. As
illustrated in Figure 3, a scheduler is considered assecure, if
it always schedules a task to a completely safe site (i.e., with
SD < SL). That is, it does not allow a task to take any risk.
On the other hand, a scheduler is considered asrisky if it ig-
nores the risk factor completely (i.e., it sets its tolerance of
probability of failure to be 1 (100%)). Effectively, the orig-
inal versions of Min-Min and Sufferage heuristics are con-
sidered risky. We also consider an intermediate risk level in
that the scheduler will allow a task to take the risk of exe-
cuting on a site that has SD< SL, provided that the proba-
bility of failure is assured to be less thanf . We call such a
schedulerf -risky.

3. A Fast Space-Time Genetic Algorithm

Genetic algorithms (GAs) have been widely used to
tackle many difficult optimization problems. A GA, being
a search technique, has a very unique feature–it maintains
a pool of potential solutions, called chromosomes, and then
tries to “reproduce” new solutions through randomly com-
bining the “good features” of existing solutions. This ex-
ploratory searching step is achieved by using the crossover
operator, which works by randomly exchanging portions

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

Figure 3. The concept of three risk levels in
defining operational modes for security con-
trol.

of two chromosomes [19]. Crossover operation searches
through the possible solution space. Another important op-
erator is mutation, which works by randomly changing one
of the genes in a chromosome. Mutation operation leads the
search out of a local optimum, in the hope of getting an even
better solution. Finally, there is a selection process–remove
the poor solutions (as indicated by their low fitness values)
and replace them by the duplicates of the best solutions. In
our implementation, a value-based roulette wheel schema
is used for selection. This schema probabilistically gener-
ates new population. Elitism, the property of guaranteeing
the best solution to remain in the population is also imple-
mented [19].

Typically, a GA is composed of two main components,
which are problem dependent: the evaluation function and
the encoding schema. The evaluation function measures the
quality of a particular solution. Each solution is associated
with a fitness value, which, in the job scheduling problem, is
the completion time of the schedule represented by the so-
lution. In this case, the smallest fitness value represents the
best solution. The efficiency of a GA depends largely on the
encoding scheme. In the job scheduling problem, the encod-
ing scheme is illustrated in Figure 4.

Figure 4. A sample chromosome encoding a
possible solution to the job scheduling prob-
lem.

Here, each chromosome is an array of numbers with each
array index representing a job and the corresponding ar-
ray element represents the site assignment for that job. The
crossover operator is then just a random swapping of two
portions of two arbitrarily selected chromosomes. Note that
the crossover point is randomly chosen. Mutation is defined
as randomly changing the site assignment of a randomly se-
lected job in an arbitrary chromosome to some other site.

As in a traditional GA, the crossover and mutation oper-
ators are applied as governed by the crossover and muta-
tion probabilities. The whole process is repeated a number
of times, which is called the number of generations (itera-
tions).

The crux of our new approach is illustrated in Figure 5.
In general, starting from a randomly generated initial pool
of solutions (called the initial chromosome population), the
quality of the best solution in the pool is usually quite low.
Over a number of generations, the solution quality gradu-
ally improves. Thus, the question is how we can skip the
initial phase of struggling with a pool of not-so-good solu-
tions and start the search closer to the convergence point.
Our answer to this question is to make use ofprior schedul-
ing knowledge–the scheduling results of previous batches.

Figure 5. The difference between conven-
tional GA and STGA in terms of solution qual-
ity improvement at the starting point on the
evolution path.

The justification of this approach is that the workload
submitted to a practical Grid computing platform usually
has some time correlation or temporal locality. That is, the
jobs submitted previously would appear again in the near
future. For instance, a physics researcher trying to generate
some simulation data today would very likely try again to-
morrow or in the near future. Thus, in our proposed STGA,
we keep a history table storing the job specifications and the
schedules. Then, such historical data on scheduling could
be used to form the initial population when the GA is in-
voked.

Specifically, in each entry of the lookup table, the input
of each entry contains three parameters: (1) the next avail-
able times of sites, (2) job execution time matrix, and (3)
job security demands. The similarity between the new input
jobs and each entry is the average similarity for the three
parameters. We map each parameter into a one-dimensional
vector, and then we use the following vector comparison
method to calculate the similarity for each parameter. Sup-
pose twok-element row vectorsa = (a1, a2, . . . , ak) and
b = (b1, b2, . . . , bk), the similarity between vectorsa and

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

b is given by:

Similarity(a,b) = 1 −

∑k

i=1 ‖ai − bi‖

max{max{ai}, max{bi}}
(2)

Because such previous scheduling results were good so-
lutions to similar problems, the initial population formed
will then be of a moderately high solution quality. Thus, our
proposed STGA does not only perform evolutionary search-
ing over “space” (i.e., the solution space as manifested by
the chromosome population) but also over “time” (i.e., the
historical scheduling result table). The overall scheduling
mechanism of our proposed STGA is illustrated in Figure 6.
The initial populations of the STGA also include those ran-
domly generated solutions to guarantee enough diversity. In
the simulation experiments, we use the Min-Min and Suf-
ferage heuristics to a fixed number of training jobs to gener-
ate the initial lookup table entries. In real-life applications,
the initial lookup table could be built from the beginning.
The LRU (Least Recently Used) algorithm is adopted to up-
date the entries in the lookup table.

Figure 6. The proposed new space-time ge-
netic algorithm (STGA) for trusted online
scheduling.

4. Simulation Results over the NAS and PSA
Workloads

In this section, we first describe in detail the performance
metrics that we have used in evaluating the effectiveness of
the scheduling algorithms considered in our study (i.e., the
three versions of the Min-Min and Sufferage heuristics, and
our proposed STGA). We then introduce two types of work-
loads and present the simulation results obtained.

4.1. Performance Metrics

To comprehensively evaluate the scheduling perfor-
mance, we have used the following metrics:

• Average response time: Denote the total number of
simulated jobs asN , and denote the completion time
for a single jobJi asci, the arrival time asai, the av-

erage response time is defined as
P

N

i=1
(ci−ai)

N
.

• Makespan: Defined as max{ci}.

• Slowdown ratio: Denote the start time for a single
job Ji as bi, the average waiting time is defined as:
P

N

i=1
(ci−bi)

N
. The slowdown ratio is defined as the ra-

tio between the average response time and the average
waiting time. This metric indicates the average con-
tention experienced by a job. That is, we have:

Slowdown Ratio=

∑N

i=1(ci − ai)/N
∑N

i=1(ci − bi)/N
(3)

• Number of risk-taking jobs Nrisk: When sites provided
security level cannot satisfy the jobs security demand,
Nrisk counts the number of jobs that are running on
such kinds of sites.

• Number of failed jobs Nfail : Job execution may fail ow-
ing to insecure resource sites applied.Nfail counts the
number of failed and rescheduled jobs.Nfail is bounded
above byNrisk.

• Site utilization: Defined by the percentage of process-
ing power allocated to user jobs out of total processing
power available at a selected Grid site.

4.2. The NAS and PSA Workloads

In order to gain more practical insights into the effective-
ness of the scheduling approaches, we use two types of re-
alistic workloads in a potentially risky Grid environment.

NAS trace workloads: We use three months accounting
records for the 128-node iPSC/860 located in the Numer-
ical Aerodynamic Simulation (NAS) Systems Division at
NASA Ames Research Center. This trace contains 92 days
of data, gathered in year 1993. For testing the performance
of the heuristics under a high-throughput Grid environment,
the 92 days trace data is proportionally squeezed to 46 days.
We map the 128 nodes to 12 Grid sites–four of the sites
each contain 16 nodes, and the other eight sites each con-
tain 8 nodes. Our simulations are based on the arrival time,
job size, and runtime data provided by the trace [21]. This
trace was sanitized to remove the user specified informa-
tion and pre-processed to correct for system downtime. De-
tailed information about the characteristics of the trace can
be found in [13].

Parameter-sweep application (PSA) workloads: The
parameter-sweep application is defined as a set of indepen-
dent sequential jobs (i.e., no job precedence) [8]. The inde-
pendent jobs operate on different datasets. A range of sce-
narios and parameters to be explored are applied to the pro-

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

gram input values to generate different data sets. The ex-
ecution model essentially involves processingN indepen-
dent jobs (each with the same task specification, but a dif-
ferent dataset) onM distributed sites whereN is, typically,
much larger thanM . Due to space limitations, we can only
show the scalability results for the PSA workloads.

4.3. Simulation Parameters and Settings

To address the following two questions: (1) Inf -risky
scheduling, why we choosef = 0.5 (50%)? (2) In the STGA
scheduling, why we choose 100 as the total number of iter-
ations? We analyze below in Figure 7 the makespan varia-
tion of thef -risky scheduling asf increases from 0 to 1.
Similarly, we show the makespan variation of the STGA al-
gorithm, as the total number of iterations increases.

0.0
 0.2
 0.4
 0.6
 0.8
 1.0

1.5x10
5

2.0x10
5

2.5x10
5

 Min-Min
f
-Risky

 Sufferage
f
-Risky

M
ak

es
pa

n
(s

ec
on

d)

f

(a) Makespan off -Risky heuristics

0
 50
 100
 150
 200

150000

155000

160000

165000

170000

 PSA,
N
=1000

M
ak

es
pa

n
(s

ec
on

d)

Number of Iterations in STGA

(b) Makespan of STGA

Figure 7. Plots of makespan for two f -risky
heuristics against increasing risk level f and
of the STGA against increasing iterations un-
der the PSA workloads over 1,000 jobs.

Figure 7(a) shows the makespan results of Min-Minf -
risky and Sufferagef -risky algorithms as a function off .

Two concave curves are observed. Thef -Min-Min achieves
its minimum atf = 0.5. Thef -Sufferage achieves its min-
imum at f = 0.6. The following assertion is made from
this analysis: The optimal f value to achieve the minimum
makespan is in the range of 0.5–0.6, or very close to this
range. Thus, we choosef = 0.5 in all of ourf -risky heuris-
tic simulation experiments. Figure 7(b) shows the makespan
of the STGA scheduling as a function of the number of evo-
lution iterations. The makespan fluctuates in the first 25 iter-
ations, starts to converge at 40 iterations, and converges to
a flat constant value after 50 iterations. This demonstrates
the fastness of our STGA. In the rest of our experiments,
we choose a larger number of iterations, say 100 iterations.

Table 1 lists important simulator parameters from the
two benchmark workloads, most of the configuration and
workload data supplied by the provider agencies.

Parameter Value

Number of jobs NAS: 16000; PSA: 5000
Number of sites NAS: 12; PSA: 20
Job arrival rate NAS: Given by trace;

PSA: 0.008
Job workloads NAS: Given by trace;

PSA: 20 levels (0-300000)
Site processing speed NAS: 8×8 nodes

and 4×16 nodes;
PSA: 10 levels (0–10)

Site security level 0.4–1.0 (uniform dist.)
Job security demand 0.6–0.9 (uniform dist.)
Number of generations 100
Initial population size 200
Crossover probability 0.8
Mutation probability 0.01
Lookup table size 150
Number of training jobs 500
Similarity threshold 0.8

Table 1. Simulation parameters and their val-
ues

4.4. Results over NAS Trace Workloads

In this section, we evaluate the performance of the seven
heuristic algorithms on the NAS trace workloads. The eval-
uation is based on the performance metrics listed in Sec-
tion 4.1. The simulation results are given for each metric,
followed by a statistical analysis over all metrics.

Figure 8(a) shows the makespan results of the seven
heuristic algorithms. Overall, the STGA has the best perfor-
mance. The two secure mode algorithms perform the worst.

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

Risky algorithms perform slightly better than thef -risky
ones. Roughly 10% improvement of STGA compared with
risky algorithms is observed. Roughly 15% improvement of
STGA is observed, compared with thef -risky algorithms.
A much higher 30% improvement is observed in using the
STGA, compared with using the secure algorithms. Fig-
ure 8(b) shows the number of failed jobs and number of
risk-taking jobs. Under a secure mode, inherently, there is
no failure. For the other five algorithms, the STGA and Min-
Min risky algorithms have the largest number of risk-taking
jobs and the largest number of failed jobs. The number of
failed jobs forf -risky algorithms is half of that of the risky
heuristics. Overall, the numbers of risk-taking jobs are com-
parable for all algorithms.

1
 2
 3
 4
 5
 6
 7

0.0

2.0x10
6

4.0x10
6

6.0x10
6

8.0x10
6

S
T

G
A

S
uf

fe
ra

ge

f
-
R

is
ky

S
uf

fe
ra

ge

S
ec

ur
e

S
uf

fe
ra

ge

R
is

ky

M
in

-m
in

R

is
ky

M
in

-M
in

f
-

R
is

ky

M
in

-m
in

S

ec
ur

e

M
ak

es
pa

n
(s

ec
on

d)

(a) Makespan in seconds

1
 2
 3
 4
 5
 6
 7

0

2000

4000

6000

8000

10000

S
T

G
A

S
uf

fe
ra

ge

R
is

ky

S
uf

fe
ra

ge

f
-
R

is
ky

S
uf

fe
ra

ge

S
ec

ur
e

M
in

-m
in

R

is
ky

M
in

-m
in

f
-

R
is

ky

M
in

-m
in

S

ec
ur

e

N
um

be
r

of
 jo

bs

N

fail

N

risk

(b) Numbers of failed and
risk-taking jobs

1
 2
 3
 4
 5
 6
 7

0

150

300

450

S
T

G
A

S
uf

fe
ra

ge

R
is

ky

S
uf

fe
ra

ge

f
-
R

is
ky

S
uf

fe
ra

ge

S
ec

ur
e

M
in

-m
in

R

is
ky

M
in

-m
in

f
-

R
is

ky

M
in

-m
in

S

ec
ur

e

S
lo

w
do

w
n

ra
tio

(c) The slowdown ratio

1
 2
 3
 4
 5
 6
 7

0.0

4.0x10
5

8.0x10
5

1.2x10
6

1.6x10
6

S
T

G
A

S
uf

fe
ra

ge

R
is

ky

S
uf

fe
ra

ge

f
-
R

is
ky

S
uf

fe
ra

ge

S
ec

ur
e

M
in

-m
in

R

is
ky

M
in

-m
in

f
-

R
is

ky

M
in

-m
in

S

ec
ur

e

A
vg

 R
sp

 T
im

e
(s

)

(d) Average response time
in seconds

Figure 8. Performance results of 6 heuristic
algorithms and of the STGA for the NAS trace
workload.

Figure 8(c) shows the slowdown ratio results. STGA
has the minimum slowdown ratio. We calculate the perfor-
mance improvement factors of the STGA, compared with
other algorithms. The STGA has more than 46% improve-
ment compared with two secure heuristics. STGA has more
than 35% improvement compared with thef -risky heuris-
tics. The STGA has more than 20% improvement over the
risky heuristics. Figure 8(d) shows the average response
times. The STGA has the shortest response time. The two

secure heuristics have the longest response times. The re-
sponse times of two risky heuristics are shorter than those of
the twof -risky heuristics. Overall, the STGA has roughly
improved 50% over the two secure heuristics. The STGA
has roughly 30% improvement over the twof -risky heuris-
tics. The STGA improves by 20%, compared with the risky
heuristics.

Figure 9 shows the site utilization rate. For all secure,f -
risky and risky heuristics, the utilization rate has almost no
difference between Min-Min and Sufferage heuristics. As
indicated by the results of the secure mode algorithms, the
utilization is not balanced among various Grid sites. Some
sites are simply not used. Eight sites among the 12 sites
achieved very high (more than 95%) utilization rates, while
one site has a much lower utilization rate, roughly 20%. The
other 3 sites have not been used at all.

On the other hand, we can see from the results of the
two f -risky heuristics that their utilization rates are much
balanced among the sites. Fewer sites are not used com-
pared with the secure heuristics. Among the 12 sites, 8
sites achieve high utilization rates, 2 sites achieve relatively
lower utilization rates, and the other 2 sites have not been
used. For the results of the two risky heuristics, owing to
the aggressive nature of this operational mode, no idle site
is observed. Thus, the site usages are much better balanced.
Compared with thef -risky heuristics, more sites achieved
higher utilization rates. The utilization rate of the STGA is
shown in Figure 9(c). The STGA has the most balanced uti-
lization. No idle site is observed, and more sites achieve
high utilization rates. With reference to the utilization rates
of three best-performed algorithms in Figure 9(c), STGA
still achieves slightly higher utilizations compared with the
risky heuristics.

A global performance comparison of the 6 security-
driven heuristics and the STGA algorithm is shown in Ta-
ble 2 under the NAS trace workload. The relative ranking
is determined by comparing the makespan and average re-
sponse time of each algorithm with respect to those of the
STGA. Specifically, we defineα to be themakespan ratio
of a heuristic with respect to the STGA. Similarly, we de-
fine β to be theresponse time ratio of a heuristic with re-
spect to the STGA. Considering all the performance metrics
in a holistic manner, the STGA is the best. The two risky
algorithms have the second place. The twof -risky heuris-
tics rank the third. The two secure heuristics have the low-
est among the seven. We conclude that our STGA is the
most effective scheduling algorithm when real-life work-
loads like NAS and PSA are applied.

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

0

20

40

60

80

100

S

ite
 U

til
iz

at
io

n
(%

)

Grid Resource Site

 Min-Min secure
 Min-Min
f
-Risky
 Min-Min Risky

(a) Min-Min

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

0

20

40

60

80

100

S
ite

 U
til

iz
at

io
n

(%
)

Grid Resource Site

 Sufferage Secure
 Sufferage
f
-Risky
 Sufferage Risky

(b) Sufferage

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

0

20

40

60

80

100

S
ite

 U
til

iz
at

io
n

(%
)

Grid Resource Site

 Min-Min Risky
 Sufferage Risky
 STGA

(c) An overall comparison of the three algorithms

Figure 9. Site utilization (%) for the NAS trace
workloads.

4.5. Scaling Effects of Workload Size (Number of
Jobs, N)

The more user jobs injected into a Grid system, the
higher the workload and the longer the time needed to pro-
cess the submitted jobs. The performance effects of varying
the number of simulated jobs are reported in Figure 10. Be-
cause the number of jobs in the NAS trace workload is fixed,
we run experiments only on the PSA workloads. The num-
ber of simulated jobs varies asN = 1000, 2000, 5000, and

Heuristics α β Ranking

Min-Min Secure 1.314 2.035 4th
0.5-Risky 1.157 1.441 3rd
Risky 1.094 1.262 2nd

Sufferage Secure 1.307 2.011 4th
0.5-Risky 1.181 1.555 3rd
Risky 1.102 1.275 2nd

STGA 1.000 1.000 1st

Table 2. Performance comparison of the 6
Heuristics and the STGA on NAS trace work-
loads

10000.
Min-Min f -risky, Sufferagef -risky and STGA are the

three best-performed scheduling algorithms for the PSA
workloads. Thus, the scalability analysis is based on these
three algorithms. Overall, all measured performance met-
rics show a monotonic increasing trend. STGA has the best
performance. The results of Min-Minf -risky and Suffer-
agef -risky are comparable for all N. The Sufferagef -risky
performs slightly better than the Min-Minf -risky. The per-
formance improvement is within 1%.

Figure 10(a) shows the makespan of these three algo-
rithms. There is 6% improvement of STGA compared with
Min-Min f -risky and Sufferagef -risky. Figure 10(b) shows
both the number of failed jobs and risk-taking jobs. Again,
STGA has fewer jobs taking risks but has more jobs failed
compared with Min-Minf -risky and Sufferagef -risky. One
explanation for this phenomenon is that thef -risky algo-
rithms set the risk thresholdf = 0.5. Thus, even more
jobs are taking risks, fewer jobs fail during execution. Fig-
ure 10(c) shows the slowdown ratios of these three al-
gorithms. Figure 10(d) shows the average response times.
There is roughly 40% improvement of STGA compared
with the other two algorithms for both slowdown ratio and
average response time.

5. Conclusions and Future Research

Security-driven job scheduling is crucial to achieving
high performance in an open Grid computing environment.
However, existing scheduling algorithms largely ignore the
security induced risks involved in dispatching jobs to re-
mote sites, which are owned by other organizations. In our
study, we first devise a security- driven scheduling model
and then we modify two well-known heuristics to work
under our new model, which captures various risk levels
in real-life applications. Under the risky conditions, our
security-driven Min-Min and Sufferage heuristics do per-
form well to match the user security demand with the site

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

1
 2
 3
 4

0.0

3.0x10
5

6.0x10
5

9.0x10
5

1.2x10
6

1.5x10
6

Number of Jobs (
N
)

1000 2000 5000 10000

M
ak

es
pa

n(
se

co
nd

)

 Min-Min
f
-Risky

 Sufferage
f
-Risky

 STGA

(a) Makespan in seconds

1
 2
 3
 4

0

2000

4000

6000

8000

Number of Jobs (
N
)

1000 2000 5000 10000

N
um

be
r

of
 J

ob
s

(

N

 fa
il
 a

nd

N

 ris
k

)

N

fail

 of Min-Min
f
-Risky

N

risk

 of Min-Min
f
-Risky

N

fail

 of Sufferage
f
-Risky

N

risk

 of Sufferage
f
-Risky

N

fail

 of STGA

N

risk

 of STGA

(b) Numbers of failed and
risk-taking jobs

1
 2
 3
 4

0

10

20

30

40

50

Number of Jobs (
N
)

1000 2000 5000 10000

S
lo

w
do

w
n

R
at

io

 Min-Min
f
-Risky

 Sufferage
f
-Risky

 STGA

(c) The slowdown ratio

1
 2
 3
 4

0.0

2.0x10
4

4.0x10
4

6.0x10
4

8.0x10
4

1.0x10
5

Number of Jobs (
N
)

1000 2000 5000 10000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
)
 Min-Min
f
-Risky

 Sufferage
f
-Risky

 STGA

(d) Average response time
in seconds

Figure 10. Performance results of 6 heuristic
algorithms and the STGA for the PSA work-
loads with number of jobs N = 1000, 2000,
5000, and 10000.

security assurance provided. However, their performance is
not stable when applying to different types of workloads.

Genetic algorithms were not applied to Grid scheduling
in the past for their slowness in generating good solutions.
We propose a new Space-Time Genetic Algorithm (STGA),
which works by swiftly generating good solutions based on
a pool of previously found solutions. This new STGA al-
gorithm is designed to meet the two conflicting goals: (1)
capable of generating high quality solutions, and (2) capa-
ble of quickly generating solutions.

Based on a statistical analysis, we find that the makespan
of the STGA algorithm is lower bounded by a minimum
time needed to evolve from sufficient crossover and mu-
tation operations. The minimum time can be reached af-
ter 50 evolution iterations in testing on the PSA workloads.
Thus, we suggest training the STGA process for 100 itera-
tions before using the algorithm for scheduling purpose. By
doing so, we have accelerated the STGA solution time sig-
nificantly. This translates to the low overhead experiences
in on-line scheduling of large number of jobs.

Our extensive simulation results indicate that all the
three algorithms scale well with the increase of the total job

number. For example, to schedule 10,000 jobs with the NAS
trace workload, the makespan of all 7 algorithms are ap-
proximately equal in magnitude. The slowdown ratio and
the average job response time of the STGA algorithm is
only 60% of those required in using the Min-Min and Suf-
ferage heuristics. The only drawback in using the STGA is
its high number of risk-taking jobs experienced. Given the
promising performance of the STGA observed by our Grid
scheduling simulation experiments, we are now working on
the production prototype scheduler based on the security-
driven heuristics and STGA proposed. Apart from this ma-
jor future research avenue, we believe that investigating the
performance of the STGA, when the job execution dura-
tions are unknown a priori is also an important problem
[15].

Acknowledgments

The authors gratefully acknowledge the funding support
of this work by an NSF ITR Grant under contract number
ACI-0325409. This work was conducted at the USC Inter-
net and Grid Computing Laboratory. The authors very much
appreciate the critical comments from the technical mem-
bers of the USC GridSec research group and the anonymous
IPDPS 2005 reviewers.

References

[1] J. H. Abawajy, “Fault-Tolerant Scheduling Policy for Grid
Computing Systems,”Proc. IPDPS 2004.

[2] A. Auyeung, I. Gondra, and H. K. Dai, “Multi-Heuristic List
Scheduling Genetic Algorithm for Task Scheduling,”Proc.
ACM Sym. Applied Computing 2003, pp. 721–724.

[3] F. Azzedin and M. Maheswaran, “Integrating Trust into Grid
Resource Management Systems,”Proc. ICPP 2002.

[4] M. A. Baker, R. Buyya, and D. Laforenza, “The Grid: Inter-
national Efforts in Global Computing,”International Journal
of Software Practice and Experience, vol. 32, no. 15, Nov.
2002.

[5] F. Berman et al., “Adaptive Computing on the Grid Using
AppLeS,”IEEE Trans. Parallel and Distributed Systems, vol.
14, no. 4, Apr. 2003, pp. 369–382.

[6] F. Berman, G. Fox, and T. Hey, (Editors),Grid Computing:
Making The Global Infrastructure a Reality, John Wiley &
Sons, 2003.

[7] T. D. Braun, H. J. Siegelet al., “A Comparison of Eleven
Static Heuristics for Mapping a Class of Independent Tasks
onto Heterogeneous Distributed Computing Systems,”J.
Parallel and Distributed Computing, vol. 61, 2001, pp. 810–
837.

[8] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman,
“Heuristics for Scheduling Parameter Sweep Applications in
Grid Environments,”Proc. HCW 2000.

[9] K. Cooperet al., “New Grid Scheduling and Rescheduling
Methods in the GrADS Project,”Proc. IPDPS 2004.

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

[10] H. Dail, F. Berman, and H. Casanova, “A Decoupled
Scheduling Approach for Grid Application Development En-
vironments,”J. Parallel and Distributed Computing, vol. 63,
2003, pp. 505–524.

[11] V. Di Martino, “Sub-Optimal Scheduling in a Grid Using Ge-
netic Algorithms,”Proc. IPDPS 2003.

[12] A. Dogan and F. Ozguner, “Matching and Scheduling Algo-
rithms for Minimizing Execution Time and Failure Proba-
bility of Applications in Heterogeneous Computing,”IEEE
Trans. Parallel and Distributed Systems, vol. 13, no. 3, Mar.
2002, pp. 308–323.

[13] D. G. Feitelson and B. Nitzberg, “Job Characteristics of a
Production Parallel Scientific Workload on the NASA Ames
iPSC/860,” Research Report RC 19790 (87657), IBM T. J.
Watson Research Center, Oct. 1994.

[14] N. Fujimoto and K. Hagihara, “Near-Optimal Dynamic Task
Scheduling of Independent Coarse-Grained Tasks onto a
Computational Grid,”Proc. ICPP 2003.

[15] M. Harchol-Balter, “Task Assignment with Unknown Dura-
tion,” J. of ACM, vol. 49, no. 2, Mar. 2002, pp. 260–288.

[16] M. Humphrey and M. R. Thompson, “Security Implications
of Typical Grid Computing Usage Scenarios,”IEEE Proc.
HPDC 2001, pp. 95–103.

[17] K. Hwang and Z. Xu,Scalable Parallel Computing: Technol-
ogy, Architecture, Programming, McGraw-Hill, San Fran-
cisco, 1998.

[18] S. Kim and J. B. Weissman, “A Genetic Algorithm Based
Approach for Scheduling Decomposable Data Grid Applica-
tions,” Proc. of ICPP 2004.

[19] Y.-K. Kwok and I. Ahmad, “Efficient Scheduling of Arbi-
trary Task Graphs to Multiprocessors Using A Parallel Ge-
netic Algorithm,” J. Parallel and Distributed Computing,
vol. 47, no. 1, pp. 58–77, Nov. 1997.

[20] Y.-K. Kwok and I. Ahmad, “Static Scheduling Algorithms
for Allocating Directed Task Graphs to Multiprocessors,”
ACM Computing Surveys, vol. 31, no. 4, pp. 406–471, Dec.
1999.

[21] V. Lo and J. Mache, “Job Scheduling for Prime Time vs.
Non- Prime Time,”Proc. Cluster Computing 2002.

[22] M. Maheswaran, S. Ali, and H. J. Sigel, “Dynamic Mapping
and Scheduling of Independent Tasks onto Heterogeneous
Computing Systems,”J. of Parallel and Distributed Com-
puting, 1999, pp. 107–131.

[23] S. Song, K. Hwang, and M. Macwan, “Fuzzy Trust Integra-
tion for Security Enforcement in Grid Computing,”Proc. of
IFIP Int’l Conf. on Network and Parallel Computing, Oct.
2004.

[24] S. Song, K. Hwang, and Y.-K. Kwok, “Security Binding
for Trusted Job Outsourcing in Open Computational Grids,”
submitted toIEEE Trans. Parallel and Distributed Systems.

[25] X.-H. Sun and M. Wu, “Grid Harvest Service: A System
for Long-Term, Application-Level Task Scheduling,”Proc.
of IPDPS 2003.

[26] M. Wu and X.-H. Sun, “A General Self-Adaptive Task
Scheduling System for Non-Dedicated Heterogeneous Com-
puting,” Proc. of Cluster Computing (Cluster 2003).

Authors’ Biographies

Shanshan Song received her B.S. degree in Computer Sci-
ence from Special Class for Gifted Young in University
of Science and Technology of China in 2001. She is cur-
rently pursuing the Ph.D. degree in the Department of Com-
puter Science at University of Southern California. She
specializes in P2P networks, network security, database
systems, parallel and distributed computing, and knowl-
edge management. Her current research activities cover
the areas of trust management in Grid and P2P systems,
security-driven scheduling algorithms, cooperative game
strategies, and Grid computing systems. She can be reached
at shanshan.song@usc.edu or via the URL: http://www-
scf.usc.edu/ shanshas/.

Yu-Kwong Kwok received the B.S. degree in Computer
Engineering from the University of Hong Kong (HKU), in
1991, and the M.Phil. and Ph.D. degrees in Computer Sci-
ence from the Hong Kong University of Science and Tech-
nology (HKUST), in 1994 and 1997, respectively. He is
an Associate Professor in the Department of Electrical and
Electronic Engineering at HKU. Dr. Kwok is currently on
leave from HKU and is a Visiting Associate Professor at
the University of Southern California. His research interests
include Grid computing, mobile computing, wireless com-
munications, network protocols, and distributed computing
algorithms. Dr. Kwok is a member of the Association for
Computing Machinery (ACM), the IEEE Computer Soci-
ety, and the IEEE Communications Society. He is a Senior
Member of the IEEE. He can be reached atykwok@hku.hk.
He is a recipient of the 2003-2004 Outstanding Young Re-
searcher Award at HKU.

Kai Hwang is a Professor and Director of Internet and Grid
Computing Laboratory at the University of Southern Cali-
fornia. He received the Ph.D. from the University of Califor-
nia, Berkeley. An IEEE Fellow, he specializes in computer
architecture, parallel processing, Internet and wireless secu-
rity, Grid and cluster computing, and distributed computing
systems. He has authored or coauthored 7 scientific books
and over 180 Journal and Conference papers in these ar-
eas. Dr. Hwang is the founding Editor-in-Chief of the Jour-
nal of Parallel and Distributed Computing. He is also on the
editorial board of IEEE Transactions on Parallel and Dis-
tributed Systems. He has performed advisory and consult-
ing work for IBM Fishkill, Intel SSD, MIT Lincoln Lab.,
ETL in Japan, and GMD in Germany. Presently, he leads the
NSF-supported ITR GridSec project at USC. The GridSec
group develops security-binding techniques for trusted Grid
computing. The group builds self-defense software systems
for protecting Grid and distributed computing resources. Dr.
Hwang can be reached at USC viakaihwang@usc.edu or
through the URL: http://GridSec.usc.edu/Hwang.html.

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

