
1 Copyright © 2002 by ASME

Proceedings of DETC 2002:
Design Automation

Sep. 29-Oct. 2, 2002, Montreal, Canada

AUTOMATED DESIGN SYNTHESIS FOR MICRO-ELECTRO-MECHANICAL SYSTEMS
(MEMS)

Ningning Zhou
Department of Mechanical Engineering
UC Berkeley, Berkeley, CA 94720-1740

nzhou@me.berkeley.edu

Alice Agogino
Department of Mechanical Engineering
UC Berkeley, Berkeley, CA 94720-1740

aagogino@me.berkeley.edu

Kristofer S.J. Pister
Department of EECS

UC Berkeley, Berkeley, CA 94720
pister@eecs.berkeley.edu

ABSTRACT
This paper proposes a general architecture for using

evolutionary algorithms to achieve MEMS design synthesis.
Functional MEMS devices are designed by combining
parameterized basic MEMS building blocks together using
Multi-objective Genetic Algorithms (MOGAs) to produce a
pareto optimal set of feasible designs. The iterative design
synthesis loop is implemented by combining MOGAs with the
SUGAR MEMS simulation tool. Given a high-level
description of the device's desired behavior, both the topology
and sizing are generated. The topology or physical
configuration includes the number and types of basic building
blocks and their connectivity. The sizing of the designs entails
assigning numerical values to parameterized building blocks. A
sample from the pareto optimal set of designs is presented for a
meandering resonator example, along with convergence plots.

INTRODUCTION
Micro-Electro-Mechanical Systems (MEMS) are

miniaturized mechanical devices and components, often
integrated or interfaced with electronics and fabricated on
silicon wafers (Petersen, 1982). To facilitate the rapid
development of MEMS technology, synthesis tools are in great
demand to automate the MEMS design process. The goal of
MEMS synthesis is to automatically generate feasible optimal
solutions. There are two stages of MEMS design: device
synthesis and fabrication process design. This research focuses
on methodologies for device synthesis.

MEMS design usually begins with high-level
specifications that describe the desired behavior of devices.
Both the physical configuration and geometries must be chosen
such that the resulting device satisfies the design objectives and
operating constraints. There has been some progress toward
direct device synthesis in the form of mask layout, fabrication
and associated device modeling, given specified structures (Li,
1998). Lo et al. (1996) developed tools to enable designers,
starting from a given high level topological abstraction of the
system, to extract parameterized coupled electro-mechanical
models, perform equivalent SPICE simulations, optimize the

design parameters, and finally synthesize layout. This tool only
handles parametric, not topological, synthesis. Mukherjee et
al. (1997) and Jing (2000) generated valid layouts of commonly
used MEMS device topologies from high-level engineering
design specifications. This approach first identifies the design
variables for a given design, models the problem as a formal
numerical optimization problem, and then solves it with
conventional optimization techniques.

All of the synthesis methods reported above, however, are
tailored to specific tasks and are not general purpose synthesis
tools. This paper proposes an evolutionary architecture to
realize automated device synthesis. Evolutionary algorithms are
global stochastic optimization techniques (Goldberg, 1989)
with high robustness. They are non-problem specific, and can
be applied to any problem with a well-formulated objective
function. Another motivation for using evolutionary algorithms
is their ability to concurrently search for multiple solutions in
parallel using a population of solutions. This motivates their
application to multi-objective optimization problems. Multi-
Objective Genetic Algorithms (MOGAs) have been successfully
applied in many fields in engineering optimal design
(Narayanan et al., 1999). This paper incorporates MOGAs into
MEMS design because of their ability to incorporate multiple
non-commensurable objectives (Schaffer, 1985; Tamaki et al.,
1996; Zitzler et al., 2000). Pareto optimality provides MEMS
designers with a family of ‘equally good’ or ‘non-dominated’
solutions, therefore providing more design flexibility.

SYNTHESIS ARCHITECTURE
Genetic algorithms strive to find the best (or at least, a

very good) solution to a problem by maintaining a population
of individuals over a series of generations. Each individual in
the population represents a candidate solution to the given
problem. This candidate solution in the original search space is
called a phenotype. A phenotype is encoded as a string of
characters or real numbers called a genotype. It can also be
encoded as other data structures such as trees. An initial
population is randomly generated. Each individual in the
population is evaluated by an objective function and assigned

2 Copyright © 2002 by ASME

fitness values. The GA transforms a population of individuals
into a new generation of the population using genetic operators.
The iteration continues until an individual or a family of
individuals is found to meet the objectives.

A software architecture has been created to implement such
an evolutionary-algorithm-based framework. Figure 1 illustrates
an evolutionary iteration loop for MEMS design. Solutions are
first encoded into the genotype format and an initial random
population of designs is produced in this format. Each design
is first checked for geometrical validity. A cost vector to be
minimized is then calculated to quantify performance of an
individual design. SUGAR (Zhou et al, 1998; Clark et al,
2002) is incorporated as a forward simulator into the MOGA’s
iteration loop to evaluate the performance of each individual
candidate design. SUGAR is a MEMS simulation package
developed at the University of California at Berkeley
(http://bsac.berkeley.edu/cadtools/sugar/). If the performance
doesn't meet the objectives, the whole population of the current
generation is ranked using pareto optimality. A fitness value is
assigned to each design based on its rank. Elitism,
selection/crossover and immigration are then applied to the
current generation to form individuals in a new generation. This
MOGA loop iteratively searches for optimal functional designs
that meet the specifications.

Figure 1 Flow chart of the evolutionary MEMS synthesis
approach

MEMS GA REPRESENTATION
The basis of MEMS GA synthesis is the coding scheme

that represents the features of a problem. This paper
decomposes a MEMS device into MEMS GA building blocks.
Many devices can be represented as a rooted acyclic tree of
building blocks. ‘Rooted’ means that there exists exactly one
distinguished node as the reference node. All other structures
are laid out with respect to this node. MEMS GA building
blocks are connected together at their nodes to form a tree. As
an example, figure 2 shows a micro-resonator with a center
mass supported by four serpentine spring structures. There are
two sets of electrostatic comb drives on both sides to drive this
resonator vibrating horizontally. This resonator, for example,

can be decomposed into seven building blocks as shown in
figure 3. There is not a unique way to decompose a device. In
order to take advantage of the multiple configurations possible
with the GA algorithm, we recommend that this decomposition
be performed according to functionality, rather than physical
structure.

The MEMS GA building blocks are pre-defined
construction materials with which the devices can be built. Two
levels of building blocks are defined here, however multiple
levels in between these are possible in MEMS design (e.g.,
clusters of clusters). Our primary building blocks are (1)
primitive elements, such as anchors, beams and electrostatic
gaps, as well as (2) clusters that are comprised of primitive
elements. A cluster is a connected configuration with more than
one primitive element. It is represented as a subnet in SUGAR.
For example, a cluster could be a serpentine spring or a folded-
flexure spring (Fedder, 1994) composed of several beams and
anchors. It could also be an electrostatic comb-drive composed
of a number of electrostatic gaps (Tang et al. 1989). Each
building block (primitive element or cluster) can be seen as a
parameterized black box. It interacts with the surrounding
building blocks through its ports or nodes. The inside
configuration is defined with a set of governing parameters.

A building block is fully described by the following
information:

• A building block type identifier;
• A list of ports or nodes through which this block can

be connected to others;
• Governing parameters.

Figure 2 A MEMS resonator with four meandering springs

3 Copyright © 2002 by ASME

Figure 3 The building blocks and their connectivity

A device synthesis problem has to be defined before
genetic algorithms are applied. First, the available types of
building blocks are defined and supplied to the GAs. Second, a
concept design with viable configurations are identified for a
specific device and supplied to the GAs. For example, as an
electrostatic actuator usually requires an anchor, spring and
electrostatic gaps in order to actuate properly, a viable GA
configuration must include these elements. The concept design
for a certain device can be identified with heuristic knowledge
by designers or by other knowledge-based tools. The GAs are
then used to choose the best topologies and the numerical
values of the associated parameters, finalizing the MEMS
device designs.

PROBLEM STATEMENT
The synthesis of MEMS meandering resonators is

demonstrated in this paper. Figure 2 shows one example of a
meandering resonator. A center mass is supported by four
serpentine spring structures. Each serpentine spring is a shown
in figure 4. Beam 1 (B1) extends from anchor point node 1 to
node 2 with length 5um, width 2um, at an angle of 0 with
respect to the x axis; beam 2 (B2) extends from node 2 to node
3 with length 10um, width 2um, at an angle of 90 with respect
to the x axis and so on. Each serpentine spring is encoded into
a matrix of N by 3 as the genotype shown in figure 4, where N
is the number of beams. Each row contains the length, width
and angle of one beam. The matrix is ordered so that the first
row corresponds to beam 1 that is the nearest to the anchor, the
second row corresponds to beam 2 that is the second nearest to
the anchor and so on. Serpentine springs with the angle of 0
and 90 degrees are special cases of meandering springs. With
arbitrary length, width and angle of each beam, we can fully
describe the configuration and geometries of a meandering
flexure. More description of the synthesis of a single
meandering spring to achieve the specified stiffness along the x
and y directions can be found in Zhou et al. (2001).

Figure 4 A meandering spring and its representation

The goal of this problem is to design a micro-resonator by
combining five parameterized building blocks: one center mass
and four meandering springs. Each spring is a cluster of one-
anchor and N beams connected subsequently. The parameters of
each spring include the number of beams N and the length,
width and angle for each beam. Each spring building block has
only one node connected to the center mass. The center mass is
defined as a four-node plate with fixed mass or a variable mass
plate with parameters length and width. The design task is to
choose the right building blocks and the numerical values of
the associated parameters to achieve the specified design
objectives.

ENCODING
A schematic of a meandering resonator is shown in figure

5. The center mass has node 1, 2, 3, 4 connected to building
block 1, 2, 3, 4 respectively. This design is encoded as a 5x3
cell array as follows.

[mass] [1 2 3 4] [L W]
[building block 1] [1] [l1 w1 θ1 l2 w2 θ2 ……]
[building block 2] [2] [l1 w1 θ1 l2 w2 θ2 ……]
[building block 3] [3] [l1 w1 θ1 l2 w2 θ2 ……]
[building block 4] [4] [l1 w1 θ1 l2 w2 θ2 ……]

Each row of the cell describes one building block. The first
column of the cell represents the building block type. The
second column of the cell represents the building block node
connection. The third column represents the building block
parameters. The center mass has length L and width W.
Building block 1 and 4 have similar configurations of one
anchor plus N beams with l1 (length) w1 (width) θ1 (angle)
associated to the closest beam to the anchor and so on.
Building block 2 and 3 have similar configurations of N beams
plus one anchor with l1 w1 θ1 associated to the closest beam to
the center mass and so on. A meandering resonator can be fully
described by this cell array.

4 Copyright © 2002 by ASME

Figure 5 Schematic of a meandering resonator

During the initialization process, 30-40% of the randomly
generated designs were found to be self-intersecting and thus
were not practical from a fabrication perspective. A rejecting
strategy was adopted to handle any illegal solutions.

CROSSOVER
Two kinds of crossovers are carried out. In parametric

crossover, building blocks of the same type are grouped
together first. For building blocks of meandering springs, the
arithmetic crossover is carried out for the first Nmin beams. The
parameters of the center mass of the two parents are also mated
in a similar way as for beams. The arithmetic crossovers are
defined as the linear combination of two parents.

C1= λ1 x1+ λ 2 x2

C2= λ1 x2+ λ2 x1

Where x1 and x2 are two parents, C1 and C2 are two child genes,
λ 1 and λ 2 are two multipliers, and λ1 + λ2 =1.

Two types of cut and splice crossover are performed in this
problem. One parent design is broken into two pieces at a one
node of a randomly selected building block. The second parent
has to be broken at a similar location, for example, both at
node 1. The corresponding pieces of two parents are exchanged.
Splicing the two new pieces generates two offspring. This
crossover ensures that each offspring will maintain the required
functional configuration of one mass and four springs. The
second cut and splice is carried out for beams within each
spring building block.

MUTATION
The mutation operator is applied in this problem because

the immigration reported previously (Zhou, 2001) was found to
be inefficient. After 2 or 3 generations of evolution, almost no
newly generated immigrants in a population were selected as
parents for crossover by roulette wheel selection. This suggests
that the immigration operator does not work effectively to
introduce new genes into the evolutionary process.

To counter this problem, uniform mutation is applied to
every design variable according to the mutation probability
independently. Once a design variable is selected for mutation,
this variable is replaced by a randomly generated real value
within its boundaries.

SYNTHESIS RESULTS
As an illustrative example, a design problem with

specifications taken from an existing serpentine resonator is
shown in figure 2 with b=80um, a=60um, each spring beam

5 Copyright © 2002 by ASME

cross-section 2x2 um, and each center mass beam 120x12.5x2
um. The goal is to design alternate meandering resonators to
match the lowest natural frequency and the stiffness in x, y
directions of the above serpentine resonator. The center mass is
assumed to be the same as in the serpentine resonator.

Design Specifications:
• the lowest natural frequency f = 93723 rad/s;
• stiffness in x direction: Kx = 1.90 N/m;
• stiffness in y direction: Ky =0.56 N/m;

Design variables: number of beams N , length of beams l,
and width of beams w , angle of beams θ for each meandering
spring.

Design Inequality Constraints: wmin ≤ w ≤ wmax, w < l ≤
lmax ,

θmin ≤ θ ≤ θmax, 1 ≤ N ≤ Nmax. w, l, θ are real numbers, N is
an integer.

The design and MOGA parameters are shown in Table 1, where
npop is the population size, ngen is the number of generations, Pc

is the crossover probability, Pe is the total percentage of elite,
and Pm is the mutation probability.

Table 1 Design constraints for meandering resonator
wmin wmax lmax θmin θmax NmaxDesign

variables 2um 20um 400um -90 90 6

npop ngen Pc Pe Pm λMOGA
configuration 400 30 0.7 5% 0.1 0.3

Figure 6 shows how the evolutionary process converges
over iterations. The solid curves represent the average natural
frequency, x stiffness, and y stiffness of the best-performed
individuals (rank 1) in each iteration. The dotted lines represent
the specified goals. Three curves show how three performance
values converge to their objectives (minimum distance from the
specified goals) concurrently in a single MOGA run. The
process converges faster at the early stage and slower at the later
stage. No significant improvement is found in performance after
25-30 iterations.

A pareto optimal set of 26 designs is found from one
MOGA run. Figure 7 shows some of the ‘equally good’ pareto
solutions with different configurations. Solution 1 is the best
in terms of the frequency; however, the kink in the lower left
leg would probably be sub-optimal from both a fatigue and
fabrication standpoint. Solution 6 is the best in terms of Kx.
Solution 3 is the best in terms of Ky. Designers will choose the

6 Copyright © 2002 by ASME

right design from the pareto set that reflects their multiple
objective trade-offs.

CONLUSION AND FUTURE RESEARCH
This paper presents an evolutionary algorithmic framework

to automatically synthesize MEMS designs. Given a higher-
level description of the device's desired behavior, both the
topology and sizing of the devices are generated using a Multi-
Objective Genetic Algorithm (MOGA). The iterative design
synthesis framework is implemented by combining MOGAs
with a MEMS simulation tool called SUGAR. MOGAs,
starting with a set of pre-defined building blocks and a concept
design configuration, present designers with a pareto optimal
set of different design configurations that meet multi-objective
design specifications. The synthesis results for a meandering
resonator example demonstrate the feasibility of this method.

In the current MEMS GA architecture, a concept design is
supplied to the MOGA process as an initial starting design.
The results will vary depending on this initial design concept.
We envision the MEMS GA algorithms as part of a larger
MEMS synthesis architecture, shown in figure 8, where case-
based reasoning for MEMS design is used to choose a concept
design based on expert knowledge, coupled with machine
learning algorithms. Case-based reasoning is an approach to
solving new problems by using knowledge gained from solving
similar problems in the past. A case library has to be collected
and established in an indexed database. The reasoning tool then
finds those cases in the library that have solved problems
similar to the current problem, and proposes a ballpark starting
point which is adapted to fit the current problem.

The research and development in the MEMS area has
accumulated an increasing number of successful designs, sub-
assemblies, and building blocks. Many have been useful and
have been adopted in new devices. A library of MEMS designs
with useful GA building blocks (clusters & primitives),
indexed by function, materials, etc., would be a valuable shared
resource to the MEMS design community. As shown in figure
8, designs could be stored as clusters of building blocks in the
library. Case-based reasoning tools could be used to select the
set of most closely matched designs to meet the input
specifications. These could provide the initial conceptual design
configurations for design case adaptation through MOGA
optimization. Final configurations and parameters would be
evolved to meet the input specifications. The newly designed
devices are then fabricated, tested and added into the case
library.

There are several issues in developing this system
architecture:

1. The acquisition of design cases.
2. The development of a representation and organization

of design cases.
3. The development of an indexing structure for storing

and recalling design cases.
4. The development of a metric for selecting and

retrieving design cases or subcases.
5. The design case adaptation and the method to verify

the results of design case adaptation.

The long term research goal is to develop a synthesis CAD
package for robust and efficient MEMS design.

Figure 8 The case-based reasoning tool for MEMS
synthesis

REFERENCES
1. Clark, J.V., Bindel, D., Zhou, N., Nie, J., Kao, W.,

Zhu, E., Kuo A., Pister, K.S.J., Demmel, J.,
Govindjee, S., Bai, Z., Gu, M. and Agogino, A.M.,
2002, “Addressing the Needs of Complex MEMS
Design,” Proceedings of the 15th IEEE International
MEMS Conference, (Jan. 20-24, 2002, Las Vegas,
Nevada), IEEE, ISBN 0-7803-7187-9, pp. 204-209.

2. Fedder, G., 1994, Simulations of
Microelectromechanical Systems, Ph.D thesis, UC
Berkeley.

3. Goldberg, David E., 1989, Genetic Algorithms in
Search, Optimization, and Machine Learning,
Addison-Wesley.

4. Jing, Q., Luo, H., Mukherjee, T., Carley, L.R. and
Fedder, G., 2000, “CMOS Micromechanical Bandpass
Filter Design using a Hierarchical MEMS Circuit
Library’’, Proceedings IEEE Thirteenth Annual
International Conference on Micro Electro
Mechanical Systems, pp. 187-192, Miyazaki, Japan.

5. Li, H. and Antonsson, E.K., 1998, “Evolutionary
Techniques in MEMS Synthesis’’, Proc. DETC'98,
1998 ASME Design Engineering Technical
Conferences, Atlanta, GA.

6. Lo, N.R., Berg, E.C., Quakkelaar, S.R., and Simon,
J.N., Tachiki, M., Lee, H.J. and Pister, K.S.J., 1996,
“Parameterized Layout Synthesis, Extraction, and
SPICE Simulation for MEMS’’, Proc. ISCAS, pp.
481-484, Atlanta, GA.

7. Mukherjee, T. and Fedder, G., 1997, “Structured
Design of Microelectromechanical systems’’, DAC '97,
Anaheim, CA.

8. Narayanan, S., and S. Azarm, 1999, “On Improving
Multiobjective Genetic Algorithms for Design
Optimization”, Structural Optimization, Vol.18, pp.
146-155.

7 Copyright © 2002 by ASME

9. Petersen, Kurt E., 1982, “Silicon as a Mechanical
Material”, Proceedings of the IEEE, Vol.70, No.5, pp.
420-457.

10. Schaffer, J.D., 1985, Multiple Objective Optimization
with Vector Evaluated Genetic Algorithms,
Proceedings of the first International Conference on
Genetic Algorithms, pp. 93-100.

11. Tamaki, H., Kita, H. and Kobayashi, S., 1996,
“Multi-Objective Optimization by Genetic Algorithm:
A Review”, Proc. 1996 IEEE International
Conference on Evolutionary Computation, pp. 517-
522, Nagoya, Japan.

12. Tang, W. C., Nguyen,T.-C H., Judy, M.W. and
Howe, R.T., 1989, “Electrostatic-comb drive of lateral
polysilicon resonators’’, Proc. of 5th International
Conference on Solid-State Sensors and Actuators,
Montreux, Switzerland,

13. Zhou, N., Zhu, B., Agogino, A.M. and Pister,
K.S.J., 2001, “Evolutionary Synthesis of MEMS
MicroElectronicMechanical Systems Design’’,
Intelligent Engineering System Through Artificial
Neural Networks, Proceedings of the Artificial Neural
Networks in Engineering, Vol.11, pp.197-202, ASME
Press.

14. Zhou, N., Clark, J.V. and Pister, K. S. J., 1998,
“Nodal Simulation for MEMS Design Using SUGAR
v0.5”, 1998 International Conference on Modeling
and Simulation of Microsystems Semiconductors,
Sensors and Actuators, pp. 308-313.

15. Zitzler, E., Deb, K. and Thiele, L., 2000,
"Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results," Evolutionary
Computation Volume 8, Number 2, MIT Press, 173-
195.

